When an object moves its length contracts in the direction of motion. The faster it moves the shorter it gets in the direction of motion.
The object in this question moves and then stops moving. So it's length first contracts and then expands to its original length when the motion stops.
The speed doesn't have to be anywhere near the speed of light. When the object moves its length contracts no matter how fast or slow it's moving.
Answer:
Explanation:
Maximum force of friction possible = μmg
= .65 x 3.8 x 9.8
= 24.2 N
u = 72 x 1000 / 60 x 60
= 20 m /s
v² = u² - 2as
a = 20 x 20 / (2 x 30)
= 6.67 m / s²
force acting on it
= 3.8 x 6.67
= 25.346 N
Friction force possible is less .
So friction will not be able to prevent its slippage
It will slip off .
A fuel cell combines hydrogen and oxygen to produce electricity, heat, and water. Fuel cells are often compared to batteries. Both convert the energy produced by a chemical reaction into usable electric power.
Explanation:
Artificial gravity can be created using a centripetal force. A centripetal force directed towards the center of the turn is required for any object to move in a circular path. In the context of a rotating space station it is the normal force provided by the spacecraft's hull that acts as centripetal force.
Hope it helps.