They do not demonstrate Earth's tilt. In fact, they're not "used" to demonstrate anything. It works the other way:. When you observe the Coriolis effect and the behavior of the Foucault pendulum, and you try to explain why the behave the way they do, one possible simple explanation for both of them is the Earth's ROTATION. Then, when you also observe the rising and setting of the sun and moon, and you also notice how the NUMBERS all go together, the case for the rotating, spherical Earth gets stronger and stronger.
Answer:
Newton’s Three Laws of Motion has a great impact.
Explanation:
Newton’s Three Laws of Motion has a great impact on the bowling game for the 2 students. When the student one throw ball to the student 2, the ball decrease its speed due to the gravity and opposing air. If these forces are removed from the system the ball will continue its motion till another force is applied on it. When the force applied to the ball it produces acceleration in the direction to the applied force. If the ball touches the ground it bounce back with equal force which is a reaction of the ground.
Answer:
The distance of separation is decreased
Explanation:
From Cuolomb's law, we know that the strength of charge is inversely proportional to the distance of separation between the charges. To mean that increasing the distance let's say from 2m to 3 m would mean initial strength getting form 1/4 to 1/9 which is a decrease. The vice versa is true hence the force of repulsion can increase only when we decrease the distance of separation.
Answer:
The charge on each plate is 0.0048 nC
Explanation:
for the distance between the plates d and given the area of plates, A, and ε = 8.85×10^-12 C^2/N.m^2, the capacitance of the plates is given by:
C = (A×ε)/d
=[(0.2304×10^-2)(0.2304×10^-2)×(8.85×10^-12))/(0.5974×10^-3)
= 7.86×10^-14 F
then if the plates are connected to a battery of voltage V = 61 V, the charge on the plates is given by:
q = C×V
= (7.86×10^-14)×(61)
= 4.80×10^-14 C
≈ 0.0048 nC
Therefore, the charge on each plate is 0.0048 nC.
<span>3) Neither precise or accurate.
This is because of the deviation between the measurements, they vary and are not within a good range. And they are not close to the accepted value. In order to be precise the measurements have to be relatively close to each other, and to be accurate they have to be close to the accepted value.</span>