Answer:Whenever a moving object experiences friction, some of its kinetic energy is transformed into thermal energy. Mechanical energy is always transformed into thermal energy due to friction. Mechanical energy is always transformed into thermal energy due to friction.
Explanation:
Whenever a moving object experiences friction, some of its kinetic energy is transformed into thermal energy. Mechanical energy is always transformed into thermal energy due to friction. Mechanical energy is always transformed into thermal energy due to friction.
The velocity when function p(t)=11 is 8 .
According to the question
The position of a car at time t represented by function :
Now,
When function p(t) = 11 , t will be
11 = t²+2t-4
0 = t² + 2t - 15
or
t² +2t-15 = 0
t² +(5-3)t-15 = 0
t² +5t-3t-15 = 0
t(t+5)-3(t+5) = 0
(t-3)(t+5) = 0
t = 3 , -5
as t cannot be -ve as given ( t≥0)
so,
t = 3
Now,
the velocity when p(t)=11
As we know velocity =
therefore to get the value of velocity from function p(t)
we have to differentiate the function with respect to time
v(t) = 2t + 2
where v(t) = velocity at that time
as t = 3 for p(t)=11
so ,
v(t) = 2t + 2
v(t) = 2*3 + 2
v(t) = 8
Hence, the velocity when function p(t)=11 is 8 .
To know more about function here:
brainly.com/question/12431044
#SPJ4
C. A step-by-step process that takes time, and is essential for learning physics concepts.
The answer is it will supply 1.1 x 10⁹ J of energy each second.
we can calculate this by using the following equation;
P = W/t
<span>W = P x t
</span><span>and by work energy relation;
E = W = P x t
</span>1 watt = 1j/s
1megawatt = 1000000 = 10⁶ j/s
<span>E = 1100 x 106 x 1 </span>
E = 1.1 x 10⁹ J
Emf e = 11
r 1 = 3.0
r 2 = 3.0
r 3 = ?
The two in parallel are equivalent to 3 • 3/6 = 1.5 Ω
To have 2.4 volts across them, the current is I = 2.4/1.5 = 1.6 amps. and the unknown R = (11–2.4) / 1.6 = 5.375 Ω or 5.4 Ω