Answer:
h = 50.49 m
Explanation:
Data provided:
Speed of skier, u = 2.0 m/s
Maximum safe speed of the skier, v = 30.0 m/s
Mass of the skier, m = 85.0
Total work = 4000 J
Height from the starting gate = h
Now, from the law of conservation of energy
Total energy at the gate = total energy at the time maximum speed is reached

where, g is the acceleration due to the gravity
on substituting the values, we get

or
170 + 833.85 × h = 4000 + 38250
or
h = 50.49 m
Answer:
0.54 A
Explanation:
Parameters given:
Number of turns, N = 15
Area of coil, A = 40 cm² = 0.004 m²
Change in magnetic field, ΔB = 5.1 - 1.5 = 3.6 T
Time interval, Δt = 2 secs
Resistance of the coil, R = 0.2 ohms
To get the magnitude of the current, we have to first find the magnitude of the EMF induced in the coil:
|V| = |(-N * ΔB * A) /Δt)
|V| = | (-15 * 3.6 * 0.004) / 2 |
|V| = 0.108 V
According to Ohm's law:
|V| = |I| * R
|I| = |V| / R
|I| = 0.108 / 0.2
|I| = 0.54 A
The magnitude of the current in the coil of wire is 0.54 A