1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aneli [31]
3 years ago
7

2. A trapezoidal channel has a bottom width of 4 m and side slopes of 2:1 (H:V). If the flow rate is 50 m3/s at a depth of 3.6 m

, report whether the flow is subcritical or supercritical. Also determine the alternate depth (for the same specific energy). Also determine the critical depth.
Engineering
1 answer:
Daniel [21]3 years ago
4 0

Answer:

Explanation:

Sum of the side slope = 2 + 1 = 3

Length of first slope = 2/3 X 3.6 = 2 X 1.2 = 2.4m

Lenght of second slope = 1/3 X 3.6 = 1.2m

Area of the trapezoidal channel = (2.4 + 1.2)/2 X 3.6 = 1.8 X 3.6 = 6.48m²

Alternate dept = 50m³/6.48m²= 7.716m

You might be interested in
The 40-ft-long A-36 steel rails on a train track are laid with a small gap between them to allow for thermal expansion. Determin
vfiekz [6]

Answer:

Ф = 0.02838 ft

F  = 1,032 N

Explanation:

To find out gap delta,

As it is case of free thermal expansion,

First we start with, some assumptions we have to made to solve this problem.

1. Thermal Expansion Coefficient of Steel is ∝= 6.45 ×10^(-6)

2. Modulas of elasticity for A-36 steel is E= 200 GPa

3. Area of rail is assumed to be unit area.

The gape required can be given by,

Ф = ∝  × ΔT  × L  ... where Ф= Gap Delta in ft

                                          ΔT= Temperature rise in F

                                               = 90- (-20)

                                               =  110 F

Ф =  6.45 ×10^(-6) × 110 × 40

Ф =  28,380 × 10^(-6) ft

Ф = 0.02838 ft     .... total gape required for expansion of steel rails

Stress induced in rails is given by,

   σ     =  ∝  × ΔT  × E

          =  6.45 ×10^(-6)   × 110  × 200

  σ      =  1,41,900 Pa

Now, let's find axial force in rails,

Here,we have to consider  ΔT= 20 F.

As due to temperature change, axial force generated in rails can be find by,

F = A × ∝ × ΔT× E × L

F = 1 × 6.45 × 10^(-6) × 20 × 200 × 10^(-9) × 40

F = 25,800 × 40 × 10^(-3)

F = 10,32,000 × 10^(-3)

F= 1,032 N

Finally, due to temperature change, rail is subjected to axial force, axial stress.

8 0
3 years ago
Since the passing of the Utah GDL laws in 1999:
wlad13 [49]
The answer is b, I hope this helps you
7 0
3 years ago
What are the controlling LRFD load combinations for dead and floor live load?
yuradex [85]

Answer:

1) 1.4(D + F)

2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)

3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)

4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)

5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S

6) 0.9D + 1.6W + 1.6H

7) 0.9D + 1.0E + 1.6H

Explanation:

Load and Resistance Factor Design

there are 7 basic load combination of LRFD that is

1) 1.4(D + F)

2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)

3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)

4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)

5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S

6) 0.9D + 1.6W + 1.6H

7) 0.9D + 1.0E + 1.6H

and

here load factor for L given ( * ) mean it is  permitted = 0.5 for occupancies when live load is less than or equal to 100 psf

here

D is dead load and L is live load

E is earth quake load and S is snow load

W is wind load and R is rain load

Lr is roof live load

3 0
3 years ago
A double-threaded Acme stub screw of 2-in. major diameter is used in a jack having a plain thrust collar of 2.5-in. mean diamete
Temka [501]
This is the answer for the question

6 0
2 years ago
In a much smaller model of the Gizmo apparatus, a 5 kg mass drops 86 mm (0.086 m) and raises the temperature of 1 gram of water
Orlov [11]

Answer:

The amount of energy transferred to the water is 4.214 J

Explanation:

The given parameters are;

The mass of the object that drops = 5 kg

The height from which it drops = 86 mm (0.086 m)

The potential energy P.E. is given by the following formula

P.E = m·g·h

Where;

m = The mass of the object = 5 kg

g = The acceleration de to gravity = 9.8 m/s²

h = The height from which the object is dropped = 0.086 m

Therefore;

P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J

Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;

The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.

6 0
2 years ago
Other questions:
  • In the combination of resistors above, consider the 1.50 µΩ and 0.75 µΩ. How can you classify the connection between these two r
    6·1 answer
  • In Visual Basic/Visual Studio, characteristics of controls, such as the Name of the control, or the Text displayed on the contro
    10·1 answer
  • In casting experiments performed using a certain alloy and type of sand mold, it took 155 sec for a cube-shaped casting to solid
    9·1 answer
  • The conditions at the beginning of compression in an Otto engine operating on hot-air standard with k=1.35 and 101.325 kPa, 0.05
    10·1 answer
  • Which of the following are made up of electrical probes and connectors?
    8·1 answer
  • Can someone teach me how to find all valid minterms of any given truth table?
    11·1 answer
  • What is the line called that has the red arrow pointing to it in the attached picture?
    6·1 answer
  • Water flows around a 6-ft diameter bridge pier with a velocity of 12 ft/s. Estimate the force (per unit length) that the water e
    8·1 answer
  • Describe in your own words the three strengthening mechanisms
    7·1 answer
  • A 100-ampere resistor bank is connected to a controller with conductor insulation rated 75°C. The resistors are not used in conj
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!