1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sertanlavr [38]
3 years ago
5

British standered institution

Engineering
1 answer:
Scorpion4ik [409]3 years ago
6 0

Answer:

The British Standards Institution, is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses

You might be interested in
When the Moon is in the position shown, how would the Moon look to an observer on the North Pole?
kirill115 [55]

Answer:

cant see the moon sorry dude

5 0
3 years ago
Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each repl
Ulleksa [173]

Answer:

The answers to the question are

(1) Process 1 to 2

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

(2) Process 2 to 3

W = 0

Q = 1135.376 kJ/kg

(3) Process 3 to 4

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

(4) Process 4 to 3

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency = 49.9 %

(c) The mean effective pressure is 9.44 bar

Explanation:

(a) Volume compression ratio \frac{v_1}{v_2}  = 10

Initial pressure p₁ = 1 bar

Initial temperature, T₁ = 310 K

cp = 1.005 kJ/kg⋅K

Temperature T₃ = 2200 K from the isentropic chart of the Otto cycle

For a polytropic process we have

\frac{p_1}{p_2}  = (\frac{v_2}{v_1} )^n Therefore p₂ = p₁ ÷ (\frac{v_2}{v_1} )^n = (1 bar) ÷ (\frac{1}{10} )^{1.3} = 19.953 bar

Similarly for a polytropic process we have

\frac{T_1}{T_2}  = (\frac{v_2}{v_1} )^{n-1} or T₂ = T₁ ÷ (\frac{v_2}{v_1} )^{n-1} = \frac{310}{0.1^{0.3}} = 618.531 K

The molar mass of air is 28.9628 g/mol.

Therefore R = \frac{8.3145}{28.9628} = 0.287 kJ/kg⋅K

cp = 1.005 kJ/kg⋅K Therefore cv = cp - R =  1.005- 0.287 = 0.718 kJ/kg⋅K

1). For process 1 to 2 which is polytropic process we have

W = \frac{R(T_2-T_1)}{n-1} = \frac{0.287(618.531-310)}{1.3 - 1}= 295.16 kJ/kg

Q =(\frac{n-\gamma}{\gamma - 1} )W = (\frac{1.3-1.4}{1.4-1} ) 295.16 kJ/kg = -73.79 kJ/kg

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

2). For process 2 to 3 which is reversible constant volume heating we have

W = 0 and Q = cv×(T₃ - T₂) = 0.718× (2200-618.531) = 1135.376 kJ/kg

W = 0

Q = 1135.376 kJ/kg

3). For process 3 to 4 which is polytropic process we have

W = \frac{R(T_4-T_3)}{n-1} = Where T₄ is given by  \frac{T_4}{T_3}  = (\frac{v_3}{v_4} )^{n-1} or T₄ = T₃ ×0.1^{0.3}

= 2200 ×0.1^{0.3}  T₄ = 1102.611 K

W =  \frac{0.287(1102.611-2200)}{1.3 - 1}= -1049.835 kJ/kg

and Q = 262.459 kJ/kg

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

4). For process 4 to 1 which is reversible constant volume cooling we have

W = 0 and Q = cv×(T₁ - T₄) = 0.718×(310 - 1102.611) = -569.09 kJ/kg

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency is given by

\eta = 1-\frac{T_4-T_1}{T_3-T_2} =1-\frac{1102.611-310}{2200-618.531} = 0.499 or 49.9 % Efficient

(c) The mean effective pressure is given by

p_{m}  = \frac{p_1r[(r^{n-1}-1)(r_p-1)]}{ (n-1)(r-1)}  where r = compression ratio and r_p = \frac{p_3}{p_2}

However p₃ = \frac{p_2T_3}{T_2} =\frac{(19.953)(2200)}{618.531} =70.97 atm

r_p = \frac{p_3}{p_2} = \frac{70.97}{19.953}  = 3.56

Therefore p_m =\frac{1*10*[(10^{0.3}-1)(3.56-1)]}{0.3*9} = 9.44 bar

Please find attached generalized diagrams of the Otto cycle

8 0
3 years ago
The design specifications of a 1.2-m long solid circular transmission shaft require that the angle of twist of the shaft not exc
Verizon [17]

Answer:

c = 18.0569 mm

Explanation:

Strategy  

We will find required diameter based on angle of twist and based on shearing stress. The larger value will govern.  

Given Data  

Applied Torque

T = 750 N.m

Length of shaft

L = 1.2 m

Modulus of Rigidity

G = 77.2 GPa

Allowable Stress

г = 90 MPa

Maximum Angle of twist  

∅=4°

∅=4*\pi/180

∅=69.813 *10^-3 rad

Required Diameter based on angle of twist  

∅=TL/GJ

∅=TL/G*\pi/2*c^4

∅=2TL/G*\pi*c^4

c=\sqrt[4]{2TL/\pi G }∅

c=18.0869 *10^-3 rad

Required Diameter based on shearing stress

г = T/J*c

г = [T/(J*\pi/2*c^4)]*c

г =[2T/(J*\pi*c^4)]*c

c=17.441*10^-3 rad

Minimum Radius Required  

We will use larger of the two values  

c= 18.0569 x 10^-3 m  

c = 18.0569 mm  

3 0
3 years ago
Are designed to make it easier for employees to get health and safety Information about
iren [92.7K]

Answer:

what the options

Explanation:

4 0
3 years ago
An 1800-W toaster, a 1400-W electric frying pan, and a 75-W lamp are plugged into the same outlet in a 15-A, 120-V circuit. The
Mila [183]

Answer:

a) Current drawn by the toaster = 15A

Current drawn by the electric frying pan = 11.67A

Current drawn by the lamp = 0.625A

b) This combination will blow the 15A fuse as the total current requirement for this setup exceeds the 15A rating of the fuse.

Explanation:

a) For parallel connection, there exists, the same voltage and different currents across all the devices.

Voltage cross each of the 3 devices = outlet voltage of 120V

From their respective power rating, current drawn by each device will be calculated.

P = IV

For the toaster, P = 1800 W, V = 120V

I = 1800/120 = 15A

For the electric frying pan, P = 1400 W, V = 120 V

I = 1400/120 = 11.67 A

For the lamp, P = 75 W, V = 120V

I = 75/120 = 0.625 A

b) Total current in a parallel connection setup = Sum total of all the currents.

Total current drawn by all 3 devices = 15 + 11.67 + 0.625 = 27.295A = 27.3 A

This total current requirement surpasses the 15A current rating of the fuse, therefore, this combination will blow the fuse.

Hope this Helps!!!

6 0
3 years ago
Other questions:
  • A force 25 N makes an angle of 30,45 and 75 degree with x,y and z axis. What should be the corresponding force vector?
    8·1 answer
  • em 4:A water jet strikes normal to a xedplate. If diameter of the outlet of the nozzle is 8 cm,and velocity of water at the outl
    9·1 answer
  • While there are many ways to solve this problem, one strategy is to calculate the volume of any metal's unit cell given its theo
    14·1 answer
  • Module 42 Review and Assessment
    7·1 answer
  • PLEASE HELP!!! ILL GIVE BRANLIEST *EXTRA POINTS* dont skip :((
    11·2 answers
  • Significant figures are an indicator of accuracy. a) True b) False
    8·1 answer
  • What structure was created to help prevent shipwrecks?
    9·1 answer
  • Determine the resistance of 100m of copper cable whose cross-sectional area is 1.5mm2​
    6·1 answer
  • What Is Photosynthesis ?​
    7·2 answers
  • Raw materials used of silicone rubber
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!