Answer:
Explanation:
Apply the law of conservation of energy

![Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)](https://tex.z-dn.net/?f=Gm_1m_2%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D%3D%5Cfrac%7B1%7D%7B2%7D%20%28m_1v_1%5E2%2Bm_2v_2%5E2%29)
from the law of conservation of the linear momentum

Therefore,
![Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)](https://tex.z-dn.net/?f=Gm_1m_2%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D%3D%5Cfrac%7B1%7D%7B2%7D%20%28m_1v_1%5E2%2Bm_2v_2%5E2%29)
![=\frac{1}{2} [m_1v_1^2+m_2[\frac{m_1v_1}{m_2} ]^2]\\\\=\frac{1}{2} [m_1v_1^2+\frac{m_1^2v_1^2}{m_2} ]\\\\=\frac{m_1v_1^2}{2} [\frac{m_1+m_2}{m_2} ]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bm_1v_1%5E2%2Bm_2%5B%5Cfrac%7Bm_1v_1%7D%7Bm_2%7D%20%5D%5E2%5D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bm_1v_1%5E2%2B%5Cfrac%7Bm_1%5E2v_1%5E2%7D%7Bm_2%7D%20%5D%5C%5C%5C%5C%3D%5Cfrac%7Bm_1v_1%5E2%7D%7B2%7D%20%5B%5Cfrac%7Bm_1%2Bm_2%7D%7Bm_2%7D%20%5D)
![v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]](https://tex.z-dn.net/?f=v_1%5E2%3D%5B%5Cfrac%7B2Gm_2%5E2%7D%7Bm_1%2Bm_2%7D%20%5D%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D)
Substitute the values in the above result
![v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]](https://tex.z-dn.net/?f=v_1%5E2%3D%5B%5Cfrac%7B2Gm_2%5E2%7D%7Bm_1%2Bm_2%7D%20%5D%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D)
![=[\frac{2(6.67\times 10^-^1^1)(107)^2}{27+107} ][\frac{1}{26} -\frac{1}{41}] \\\\=1.6038\times 10^-^1^0\\\\v_1=\sqrt{1.6038\times 106-^1^0} \\\\=1.2664 \times 10^-^5m/s](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B2%286.67%5Ctimes%2010%5E-%5E1%5E1%29%28107%29%5E2%7D%7B27%2B107%7D%20%5D%5B%5Cfrac%7B1%7D%7B26%7D%20-%5Cfrac%7B1%7D%7B41%7D%5D%20%5C%5C%5C%5C%3D1.6038%5Ctimes%2010%5E-%5E1%5E0%5C%5C%5C%5Cv_1%3D%5Csqrt%7B1.6038%5Ctimes%20106-%5E1%5E0%7D%20%5C%5C%5C%5C%3D1.2664%20%5Ctimes%2010%5E-%5E5m%2Fs)
B) the speed of the sphere with mass 107.0 kg is

\\\\=3.195\times 10^-^6m/s](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B27%7D%7B107%7D%20%5D%281.2664%20%5Ctimes%2010%5E-%5E5%29%5C%5C%5C%5C%3D3.195%5Ctimes%2010%5E-%5E6m%2Fs)
C) the magnitude of the relative velocity with which one sphere is

D) the distance of the centre is proportional to the acceleration

Thus,

and

When the sphere make contact with eachother
Therefore,

And

The point of contact of the sphere is

Answer:
Explanation:
a) I = ½mR² = ½(19)(0.15²) = 0.21375 kg•m²
b) τ = Fnet(r) = (25 - 12)(0.15) = 1.95 N•m
c) CCW
d) a = τ/I = 1.95 / 0.21375 = 9.12280701... = 9.1 rad/s²
e) CCW
Answer:
Explanation:
Given
Lowest four resonance frequencies are given with magnitude
50,100,150 and 200 Hz
The frequency of vibrating string is given by

where n=1,2,3 or ...n
L=Length of string
T=Tension
Mass per unit length
When string is clamped at mid-point
Effecting length becomes 
Thus new Frequency becomes

i.e. New frequency is double of old
so new lowest four resonant frequencies are 100,200,300 and 400 Hz
<span>there is no horizontal displacement if he went straight up
straight up means vertical, so his vertical displacment is 20 m</span>
Answer:
False
Explanation:
The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².
Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,
s = 1/2gt² ⇒ t = √(2s/g)
Since. s = height is the same for both objects, they land at the same time neglecting air resistance.