Answer:
A velocity of 
Explanation:
Since the magnitude of the vector is equal to the magnitude of velocity, velocity of the 2 cm vector represents a velocity of $10\times 2= 20 \: km/h$.
Answer:
b. passes through the principal focal point.
Explanation:
Light wave can be defined as an electromagnetic wave that do not require a medium of propagation for it to travel through a vacuum of space where no particles exist.
A lens can be defined as a transparent optical instrument that refracts rays of light to produce a real image.
Basically, there are two (2) main types of lens and these includes;
I. Diverging (concave) lens.
II. Converging (convex) lens.
A converging lens refers to a type of lens that typically causes parallel rays of light with respect to its principal axis to come to a focus (converge) and form a real image. This type of lens is usually thin at the lower and upper edges and thick across the middle.
For a converging lens, a ray arriving parallel to the optic axis passes through the principal focal point.
The area-
The area under the line in a velocity-time graph represents the distance travelled. To find the distance travelled in the graph above, we need to find the area of the light-blue triangle and the dark-blue rectangle.
<span><span>Area of light-blue triangle -
<span>The width of the triangle is 4 seconds and the height is 8 meters per second. To find the area, you use the equation: <span>area of triangle = 1⁄2 × base × height </span><span>so the area of the light-blue triangle is 1⁄2 × 8 × 4 = 16m. </span></span></span><span> Area of dark-blue rectangle
The width of the rectangle is 6 seconds and the height is 8 meters per second. So the area is 8 × 6 = 48m.</span><span> Area under the whole graph
<span>The area of the light-blue triangle plus the area of the dark-blue rectangle is:16 + 48 = 64m.<span>This is the total area under the distance-time graph. This area represents the distance covered.</span></span></span></span>
Answer:
Explanation:
Given
mass of spring 
extension in spring 
downward velocity 
Position in undamped free vibration is given by

where 
also 



it is given


substituting values we get






