Answer:



Explanation:
M = Mass of Uranus
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Uranus = 25360 km
h = Altitude = 104000 km
= Radius of Miranda = 236 km
m = Mass of Miranda = 
Acceleration due to gravity is given by

The mass of Uranus is 
Acceleration is given by

Miranda's acceleration due to its orbital motion about Uranus is 
On Miranda

Acceleration due to Miranda's gravity at the surface of Miranda is 
No, both the objects will fall towards Uranus. Also, they are not stationary.
Answer:
1) We will have excess of electrons
2) The number of electrons transferred equals 
Explanation:
Part a)
Since we know that the charge transfer occurs by the transfer of electrons only as it is given that the carpet has acquired a positive charge it means that it has lost some of the electron's since electrons are negatively charged and if a neutral body looses negative charge it will become positively charged. The electron's that are lost by the carpet will be acquired by the feet of the human thus making us negatively charged.Hence we will gain electrons making us excess in electrons.
Part b)
From charge quantinization principle we have

where
Q = charge of body
n = no of electrons
e = fundamental charge
Applying values in the above equation we get

I think it is 1 and 4 hope this helped! ( I am only in middle school)
Answer:
(a) 1.73 s
(b) 14.75 m
(c) 3.36 s
(d) double
(e) 63.32 m
Explanation:
Vertical component of initial velocity, uy = 17 m/s
Horizontal component of initial velocity, ux = 18.3 m/s
(A) At highest point of trajectory, the vertical component of velocity is zero. Let the time taken is t.
Use first equation of motion in vertical direction
vy = uy - gt
0 = 17 - 9.8 t
t = 1.73 seconds
(B) Let the highest point is at height h.
Use III equation of motion in vertical direction

0 = 17 x 17 - 2 x 9.8 x h
h = 14.75 m
(C) The time taken by the ball to return to original level is T.
Use second equation of motion i vertical direction.

h = 0 , u = 17 m/s
0 = 17 t - 0.5 x 9.8 t^2
t = 3.46 second
(D) It is the double of time calculated in part A
(E) Horizontal distance = horizontal velocity x total time
d = 18.3 x 3.46 = 63.32 m