1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
3 years ago
7

A 100 gram glass container contains 200 grams of water and 50.0 grams of ice all at 0°c. a 200 gram piece of lead at 100°c is ad

ded to the water and ice in the container. what is the final temperature of the system? (specific heat of ice = 2,000 j/kg°c , specific heat of water = 4,186 j/kg°c, heat of fusion of water = 333.7 kj/kg, specific heat of glass = 837.2 j/km°c, specific heat of lead = 127.7 j/km°c)
Chemistry
1 answer:
ASHA 777 [7]3 years ago
3 0

0 \; \textdegree{\text{C}}

Explanation:

Assuming that the final (equilibrium) temperature of the system is above the melting point of ice, such that all ice in the container melts in this process thus

  • E(\text{fusion}) = m(\text{ice}) \cdot L_{f}(\text{water}) = 66.74 \; \text{kJ} and
  • m(\text{water, final}) = m(\text{water, initial}) + m(\text{ice, initial}) = 0.250 \; \text{kg}

Let the final temperature of the system be t \; \textdegree{\text{C}}. Thus \Delta T (\text{water}) = \Delta T (\text{beaker}) = t(\text{initial})  - t_{0} = t \; \textdegree{\text{C}}

  • Q(\text{water}) &= &c(\text{water}) \cdot m(\text{water, final}) \cdot \Delta T (\text{water})= 1.047 \cdot t\; \text{kJ} (converted to kilojoules)
  • Q(\text{container}) &= &c(\text{glass}) \cdot m(\text{container}) \cdot \Delta T (\text{container})= 0.0837 \cdot t \; \text{kJ}
  • Q(\text{lead}) &= &c(\text{lead}) \cdot m(\text{lead}) \cdot \Delta T (\text{lead})= 0.0255 \cdot (100 - t)\; \text{kJ}

The fact that energy within this system (assuming proper insulation) conserves allows for the construction of an equation about variable t.

E(\text{absorbed} ) = E(\text{released})

  • E(\text{absorbed} ) = E(\text{fushion}) + Q(\text{water}) + Q(\text{container})
  • E(\text{released}) =  Q(\text{lead})

Confirm the uniformity of units, equate the two expressions and solve for t:

66.74 + 1.047 \cdot t + 0.0837 \cdot t = 0.0255 \cdot (80 - t)

t \approx -55.95\; \textdegree{\text{C}} < 0\; \textdegree{\text{C}} which goes against the initial assumption. Implying that the final temperature does <em>not</em> go above the melting point of water- i.e., t \le 0 \; \textdegree{\text{C}}. However, there's no way for the temperature of the system to go below 0 \; \textdegree{\text{C}}; doing so would require the removal of heat from the system which isn't possible under the given circumstance; the ice-water mixture experiences an addition of heat as the hot block of lead was added to the system.

The temperature of the system therefore remains at 0 \; \textdegree{\text{C}}; the only macroscopic change in this process is expected to be observed as a slight variation in the ratio between the mass of liquid water and that of the ice in this system.

You might be interested in
Nickname for nebula "star _ u _ _ _ _ _
Vilka [71]
Star clusters is the only thing i can think of that would apply.
6 0
3 years ago
How do you work out question 1a?
Sliva [168]

Answer:

-125 kJ

Explanation:

You calculate the energy required to break all the bonds in the reactants. Then you subtract the energy to break all the bonds in the products.

                     H₂C=CH₂   +    H₂ ⟶    H₃C-CH₃

Bonds:       4C-H + 1C=C     1H-H     6C-H + 1C-C

D/kJ·mol⁻¹:  413       612        436       413      347

The formula relating ΔHrxn and bond dissociation energies (D) is

ΔHrxn = Σ(Dreactants) – Σ(Dproducts)

(Note: This is an exception to the rule. All other thermochemical reactions are “products – reactants”. With bond energies, it’s “reactants – products”. The reason comes from the way we define bond energies.)

<em>For the reactant</em>s:

Σ(Dreactants) = 4 × 413 + 1 × 612 + 1 × 436 = 2700 kJ

<em>For the products:</em>

Σ(Dproducts) = 6 × 413 + 1 × 347 = 2825 kJ

<em>For the system</em> :

ΔHrxn = 2700 - 2825 = -125 kJ

4 0
3 years ago
How many elements and atoms are in marble
DochEvi [55]

Answer:

Explanation:

Scientists know that there are 6x1023 molecules in a mole - so we have about 0.5x1023 molecules in our marble…and since every silicon dioxide molecule has one atom of silicon and two of oxygen, we have a grand total of 1.5x1023 atoms. That's 150,000,000,000,000,000,000,000 atoms

7 0
3 years ago
Positron emission of technetium-95
NNADVOKAT [17]
Idk it’s making me answer a question in order to get help on my own
5 0
3 years ago
What is the answer to this question
Stels [109]

Answer:

38 kg/m³

0.038 g/mL

Explanation:

Volume of a cube is the side length cubed.

V = s³

Given s = 0.65 m:

V = (0.65 m)³

V ≈ 0.275 m³

The mass is 10.5 kg.  The density is the mass divided by volume:

ρ = (10.5 kg) / (0.275 m³)

ρ ≈ 38 kg/m³

Or:

ρ ≈ 0.038 g/mL

4 0
3 years ago
Other questions:
  • The density of an unknown gas is found to be 3.44 g/l at standard temperature and pressure (stp). what is the molar mass of this
    14·1 answer
  • In the following reaction, what is the relationship between the rate at which the nitrous oxide is used up, the rate at which th
    15·1 answer
  • Lipids that are liquid at room temperature are known as ____.
    8·1 answer
  • What is true of a covalent bond? (03.03)
    12·2 answers
  • Which has a higher mass percent of magnesium mgo or mg3n2?
    12·1 answer
  • I can't understand this I need it done by 4:20​
    8·1 answer
  • More heat is required to raise the temperature of water than any other substance. This is a description of the unique property o
    8·1 answer
  • Genetically engineered crops (3 points)
    8·1 answer
  • Someone help please ...
    13·1 answer
  • A geologist fills three identical funnels with three different sizes of sandstone. Then, the geologist pours 500 mL of water int
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!