Answer:
no it is dry_____________
Answer:
71.372 g or 0.7 moles
Explanation:
We are given;
- Moles of Aluminium is 1.40 mol
- Moles of Oxygen 1.35 mol
We are required to determine the theoretical yield of Aluminium oxide
The equation for the reaction between Aluminium and Oxygen is given by;
4Al(s) + 3O₂(g) → 2Al₂O₃(s)
From the equation 4 moles Al reacts with 3 moles of oxygen to yield 2 moles of Aluminium oxide.
Therefore;
1.4 moles of Al will require 1.05 moles (1.4 × 3/4) of oxygen
1.35 moles of Oxygen will require 1.8 moles (1.35 × 4/3) of Aluminium
Therefore, Aluminium is the rate limiting reagent in the reaction while Oxygen is the excess reactant.
4 moles of aluminium reacts to generate 2 moles aluminium oxide.
Therefore;
Mole ratio Al : Al₂O₃ is 4 : 2
Thus;
Moles of Al₂O₃ = Moles of Al × 0.5
= 1.4 moles × 0.5
= 0.7 moles
But; 1 mole of Al₂O₃ = 101.96 g/mol
Thus;
Theoretical mass of Al₂O₃ = 0.7 moles × 101.96 g/mol
= 71.372 g
Answer:-
Thanks for not describing your question well enough
Answer: Nonporous
Explanation: I don’t know if this is right but please correct me!
Answer:
sp3 - 1,2,13,16,18,19
sp2- 3,4,5,6,7,8,9,10,11,12,14,15,17
sp- 0
Explanation:
Hybridization is the idea that atomic orbitals fuse to form newly hybridized orbitals, which in turn, influences molecular geometry and bonding properties (Chemlibretexts).
Carbon atoms that are singly bonded are sp3 hybridized, carbon atoms that are doubly bonded are sp2 hybridized while carbon atoms that are triply bonded are sp hybridized.
Sp3 hybridized atoms have a tetrahedral geometry, sp2 hybridized atoms have a trigonal planar geometry while an sp hybridized atom has a linear geometry.
The hybridization state of each atom in the compound has been shown in the answer section.