You might have meant hemiacetal, not hemicetal.
Acetals contain two –OR groups, one –R group and a –H atom. In hemiacetals, one of the –OR groups in acetals is replaced by a –OH group<span>.
</span>
<u>Answer:</u> The red litmus paper turns blue on dipping in NaOH solution.
<u>Explanation:</u>
Litmus paper is the indicator that detects the nature of the solution, whether it is acidic or basic.
There are 2 types of litmus paper:
- <u>Red litmus paper:</u> This paper will turn blue if it is dipped in basic solution and will remain as such if it is dipped in acidic solution.
- <u>Blue litmus paper:</u> This paper will turn red if it is dipped in acidic solution and will remain as such if it is dipped in basic solution.
NaOH is a strong base, so when a red litmus paper is dipped in the beaker having necessary amount of NaOH, the red litmus paper turns into blue.
Answer:
[H₂] = 1.61x10⁻³ M
Explanation:
2H₂S(g) ⇋ 2H₂(g) + S₂(g)
Kc = 9.30x10⁻⁸ = ![\frac{[H_{2}]^2[S_{2}]}{[H_{2}S]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH_%7B2%7D%5D%5E2%5BS_%7B2%7D%5D%7D%7B%5BH_%7B2%7DS%5D%5E2%7D)
First we <u>calculate the initial concentration</u>:
0.45 molH₂S / 3.0L = 0.15 M
The concentrations at equilibrium would be:
[H₂S] = 0.15 - 2x
[H₂] = 2x
[S₂] = x
We <u>put the data in the Kc expression and solve for x</u>:


We make a simplification because x<<< 0.0225:

x = 8.058x10⁻⁴
[H₂] = 2*x = 1.61x10⁻³ M
<em>Answer:</em>
- The concentration of new solution will be 1×10∧-7 M.
<em>Solution:</em>
<em>Data Given </em>
given mass of fluoxymesterone =16.8mg = 0.0168 g
molar mass of fluoxymesterone = 336g/mol
vol. of fluoxymesterone = 500.0 ml = 0.500 L
Stock Molarity of fluoxymesterone = (0.0168/336)÷0.500 = 1×10∧-4 M
So applying dilution formula
Stock Solution : New Solution
M1.V1 = M2.V2
( 1×10∧-4 M) × (1×10∧-6 L) = M2 × 0.001 L
[( 1×10∧-4) × (1×10∧-6)]÷[0.001] = M2
1 × 10∧-7 = M2
<em>Result:</em>
- The concentration of new solution M2 will be 1 × 10∧-7
We will assume helium to behave as an ideal gas and apply the ideal gas law:
PV = nRT
For pressure measured in atmospheres and volume measured in liters, the value of the molar gas constant is 0.082. Therefore:
T = PV / nR
T = (2.57 x 15.5) / (1.2 x 0.082)
T = 404.8 Kelvin