1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
2 years ago
10

(b) A ball is thrown from a point 1.50 m above the ground. The initial velocity is 19.5 m/s at

Physics
1 answer:
Nataly_w [17]2 years ago
8 0

The answers are:

(i) 6.35m

(ii) 20.2 m/s


It seems like you already have the answer, but let me show you how to get it:


You have two givens:

Vi = 19.5m/s

Θ = 30°

dy = 1.50m (This is not the maximum height, just to be clear)


When working with these types of equations, you just need to know your kinematics equations. For projectiles launched at an angle, you will need to first break down the initial velocity (Vi) into its horizontal (x) and vertical (y) components.


*<em>Now remember this, if you are solving for something in the horizontal movement always use only x-components. When solving for vertical movements, always use y-components. </em>


Let's move on to breaking down the initial velocity into both y and x components.


Viy = SinΘVi = (Sin30°)(19.5m/s) = <em>9.75 m/s</em>

Vix = CosΘVi = (Cos30°)(19.5m/s) = <em>16.89 m/s</em>


Okay, so we have that down now. The next step is to decide which kinematics equation you will use. Because you have no time, you need to use the kinematic equation that is not time dependent.


(i) Maximum height above the ground


Remember that the object was thrown 1.50m above the ground. So we save that for later. First we need to solve for the maximum height above the horizontal, or the point where it was thrown.


The kinematics equation you will use is:

Vf^{2} = Vi^{2}+2ad


Where:

Vf = final velocity

Vi = inital velocity

a = 9.8m/s²

d = displacement


We will derive our displacement from this equation. And you will come up with this:

d = \dfrac{Vf^{2}-Vi^{2}}{2a}


Again, remember that we are looking for a vertical component or y-component because we are looking for HEIGHT. So we use this plugging in vertical values only.


Vf at maximum height is always 0m/s because at maximum height, objects stop. Also because gravity is a downwards force you will use -9.8m/s².

Vfy = 0 m/s a = -9.8m/s² Viy = 9.75m/s

dy = \dfrac{Vfy^{2}-Viy^{2}}{2a}

dy = \dfrac{0^{2}-(9.75m/s)^{2}}{2(-9.8m/s^{2})}

dy = \dfrac{0^{2}-(9.75m/s)^{2}}{2(-9.8m/s^{2})}

dy = \dfrac{-95.0625m^{2}/s^{2}}{-19.6m/s^{2}}

dy = 4.85m


So from the point it was thrown, it reached a height of 4.85m. Now we add that to the height it was thrown to get the MAXIMUM HEIGHT <em>ABOVE THE GROUND.</em>


4.85m + 1.50m = 6.35m


(ii) Speed before it strikes the ground. (Vf=resultant velocity)

Okay, so here we need to consider a couple of things. To get the VF we need to first figure out the final velocities of both the x and y components. We are combining them to get the resultant velocity.


Vfx = horizontal velocity = Initial horizontal velocity (Vix). This is because gravity is not acting upon the horizontal movement so it remains constant.


Vfy = ?

VF =?


We need to solve this, again, using the same formula, but this time, you need to consider we are moving downwards now. So this time, instead of Vfy being 0 m/s, Viy is now 0 m/s. This is because it started moving from rest.


Vfy^{2} = Viy^{2}+2ad

Vfy^{2} = 0m/s^{2}+2(9.8m/s^{2}(6.35m)

\sqrt{Vfy^{2}} = \sqrt{124.46m^{2}/s^{2}}

Vfy= 11.16m/s


OKAY! We are at our last step. Now to get the resultant velocity, we apply the Pythagorean theorem.


Vf^{2} = Vfx^{2} + Vfy^{2}

\sqrt{Vf^{2}} = \sqrt{(16.89m/s)^{2}+(11.16m/s)^{2}}

Vf =20.2m/s


The ball was falling at 20.2m/s before it hit the ground.

You might be interested in
(5, 3) and (7, 3) are two coordinate points for a single object on a position-versus-time graph. Assume time is measured in seco
Maru [420]
Since the y axis stayed consistent, we can assume it did not move at all.
(So your answer would be A)
6 0
3 years ago
Read 2 more answers
A mass is placed at the end of a spring. It has starting velocity of V &amp; allowed to oscillate freely. If the mass has a star
LiRa [457]

Answer:

Equation for SHM can be written

V = w A cos w t        where w is the angular frequency and the velocity is a                                         maximum at t = 0

V1 = w1  A cos w1 t

V2 = w2 A cos w2 t

V2 / V1 = w2 / w1     since cos X t = 1 if t = zero

V2 / V1 = 2 pi f2 / (2 pi f1) = f2 / f1 = T1 / T2

If the velocity is twice as large the period will be 1/2 long

8 0
2 years ago
(a) Calculate the absolute pressure at the bottom of a freshwater lake at a point whose depth is 30.0 m. Assume the density of t
Law Incorporation [45]

Answer:

(a) The absolute pressure at the bottom of the freshwater lake is 395.3 kPa

(b) The force exerted by the water on the window is 36101.5 N

Explanation:

(a)

The absolute pressure is given by the formula

P = P_{o} + \rho gh

Where P is the absolute pressure

P_{o} is the atmospheric pressure

\rho is the density

g is the acceleration due to gravity (Take g = 9.8 m/s^{2} )

h is the height

From the question

h = 30.0 m

\rho = 1.00 × 10³ kg/m³ = 1000 kg/m³

P_{o} = 101.3 kPa = 101300 Pa

Using the formula

P = P_{o} + \rho gh

P = 101300 + (1000×9.8×30.0)

P = 101300 + 294000

P =395300 Pa

P = 395.3 kPa

Hence, the absolute pressure at the bottom of the freshwater lake is 395.3 kPa

(b)

For the force exerted

From

P = F/A

Where P is the pressure

F is the force

and A is the area

Then, F = P × A

Here, The area will be area of the window of the underwater vehicle.

Diameter of the circular window = 34.1 cm = 0.341 m

From Area = πD²/4

Then, A = π×(0.341)²/4 = 0.0913269 m²

Now,

From F = P × A

F = 395300 × 0.0913269

F = 36101.5 N

Hence, the force exerted by the water on the window is 36101.5 N

5 0
2 years ago
3. What is the relationship between the kinetic energy of molecules in an object and the object’s temperature? a. As the tempera
evablogger [386]

I think the answer A since temperature is the average kinetic energy of the molecules, so increasing temperature must increase kinetic energy

4 0
3 years ago
Read 2 more answers
A positively charged particle moves through an electric field. As part of a complicated trajectory, the particle passes through
kow [346]

Answer:

(B) The speed is larger at A than at B.

Explanation:

Point B, the final point of the trajectory, has higher electric potential than point A, the initial point of the trajectory, so the electric potential energy of the charged particle increases, which means that its kinetic energy must be decreasing, thus the speed at B must be lower than the speed at A.

8 0
2 years ago
Other questions:
  • For convection to occur,
    12·1 answer
  • What is the acceleration of a car that moves at a steady velocity of 100 km/h for 100 seconds? Explain your answer.
    14·1 answer
  • What type of reaction is shown below? Ba(OH)2 + 8H20 + 2NH4NO3 + heat ?10H2O + 2NH3 + Ba(NO3)2
    13·2 answers
  • Sentences and facts for the laws of motion.
    15·1 answer
  • A skateboarder rolls off a horizontal ledge that is 1.32m high and lands 1.88m from the base of the ledge. What was the initial
    11·1 answer
  • All parts of the electromagnetic spectrum travel at a speed of 3 × 108 m/s when traveling through no medium. A "vacuum" means th
    14·1 answer
  • How much work in joules is required to lift a 23 kg box up from the ground to your waist that is 1.0 meters high, carry it 6 met
    11·1 answer
  • HELP!!!<br><br> i’ve been stuck at this question for a whole day
    10·2 answers
  • In the diagram below, a 10-kilogram ball is fired with a
    11·1 answer
  • Find the first three harmonics of a string of linear mass density 2. 00 g/m and length 0. 600 m when the tension in it is 50. 0
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!