Answer:
a
Explanation:
If its not right choose D
Answer:
Explanation:
V = 100sin(ωt) + 150cos(ωt)
let x = ωt
V = 100sin(x) + 150cos(x)
a maximum or minimum will occur when the derivative is zero
V' = 100cos(x) - 150sin(x)
0 = 100cos(x) - 150sin(x)
100cos(x) = 150sin(x)
100/150 = sin(x)/cos(x)
0.6667 = tan(x)
x = 0.588 rad
V = 100sin(0.588) + 150cos(0.588)
V = 180.27756
as the maximum will not occur until ωt = 0.588 radians, for a cosine function we subtract that amount as a phase angle φ
V = 180.3 cos(ωt - 0.588)
or as a sine function, the phase angle lags the cosine by a difference of π/2
V = 180.3sin(ωt - (0.588 - π/2)
V = 180.3sin(ωt + 0.983)
The speed of the second mass after it has moved ℎ=2.47 meters will be 1.09 m/s approximately
<h3>
What are we to consider in equilibrium ?</h3>
Whenever the friction in the pulley is negligible, the two blocks will accelerate at the same magnitude. Also, the tension at both sides will be the same.
Given that a large mass m1=5.75 kg and is attached to a smaller mass m2=3.53 kg by a string and the mass of the pulley and string are negligible compared to the other two masses. Mass 1 is started with an initial downward speed of 2.13 m/s.
The acceleration at which they will both move will be;
a = (
-
) / (
+
)
a = (5.75 - 3.53) / (5.75 + 3.53)
a = 2.22 / 9.28
a = 0.24 m/s²
Let us assume that the second mass starts from rest, and the distance covered is the h = 2.47 m
We can use third equation of motion to calculate the speed of mass 2 after it has moved ℎ=2.47 meters.
v² = u² + 2as
since u =0
v² = 2 × 0.24 × 2.47
v² = 1.1856
v = √1.19
v = 1.0888 m/s
Therefore, the speed of mass 2 after it has moved ℎ=2.47 meters will be 1.09 m/s approximately
Learn more about Equilibrium here: brainly.com/question/517289
#SPJ1
Answer: uhhhhhhh what is this for?
Explanation i so confused
The answer to this would be :
<span>consequence
</span>hope that this helps you!
Source: I had done a research about this. =)