The average speed between 0 h and 2.340 h is 6.97 Km/h
Average speed is defined as the total distance travelled divided by the total time taken to cover the distance.

With the above formula, we can obtain the average speed between 0 h and 2.340 h as illustrated below:
- Total time = 2.340 – 0 = 2.340 h
- Total distance = 16.3 – 0 = 16.3 Km
- Average speed =?

Learn more about average speed: brainly.com/question/24884027
For vertical motion, use the following kinematics equation:
H(t) = X + Vt + 0.5At²
H(t) is the height of the ball at any point in time t for t ≥ 0s
X is the initial height
V is the initial vertical velocity
A is the constant vertical acceleration
Given values:
X = 1.4m
V = 0m/s (starting from free fall)
A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)
Plug in these values to get H(t):
H(t) = 1.4 + 0t - 4.905t²
H(t) = 1.4 - 4.905t²
We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:
1.4 - 4.905t² = 0
4.905t² = 1.4
t² = 0.2854
t = ±0.5342s
Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))
t = 0.53s
Answer:
Photosynthesis
Explanation:
Studies about the time period of oxygen accumulation suggests that free oxygen was first produced by prokaryotic and then later by eukaryotic organisms in the ocean. These organisms carried out photosynthesis more efficiently, producing oxygen as a waste product.
The organism mainly responsible for this is known as cyanobacteria, or blue-green algae. These microbes conduct photosynthesis: using sunshine, water and carbon dioxide to produce carbohydrates and, oxygen.
Always here to help. Bring it!!!
You do not doubt it. The third Law of Newton really works. I would say it is the most reliable law of the Universe. Action and reaction. It is not subject to special conditions, it works always. If an object exerts a force over other object, the second object exerts a force of equal magnitude but in the opposed direction over the first.
So, the answer, undoubtedly, is that the ball exerts a force of 0.5 N over Alices's foot as she kicks it.