Answer: The total pressure of air in lungs of an individual is 760.28 mm Hg
Explanation:
According to Dalton's law, the total pressure is the sum of individual pressures.

Given :
=total pressure of gases = ?
= partial pressure of oxygen = 100 mm Hg
= partial pressure of nitrogen = 573 mm Hg
= partial pressure of Carbon dioxide = 0.053 atm = 40.28 mm Hg(1 atm = 760 mmHg)
= partial pressure of water vapor = 47 torr = 47 mm Hg (1torr=1 mm Hg)
putting in the values we get:
Thus the total pressure of air in lungs of an individual is 760.28 mm Hg
(4) chemical energy to electrical energy is the correct answer.
Hope this helps~
The chloroplasts i believe is the answer
<span>Carrying capacity is the number of organisms an ecosystem can support. It is the maximum size of a population that can survive in the ecosystem. If the animals reach the carrying capacity, the population may crash. As the consequence, the number of animals will decrease due to predators or diseases.</span>