Answer:
a) p = m1 v1 + m2 v2
, b) dp / dt = m1 a1 + m2 a2
, c) It is equivalent to force
dp / dt = 0
Explanation:
In this problem we have two blocks and the system is formed by the two bodies.
Part A. Initially they ask us to find the moment of the whole system
p = m1 v1 + m2 v2
Part B.
Find the derivative
dp / dt = m1 dv1dt + m2 dv2 / dt
dp / dt = m1 a1 + m2 a2
Part C.
Let's analyze the dimensions
m a = [kg] [m / s2] = [N]
It is equivalent to force
Part d
Acceleration is due to a net force applied
Part e
The acceleration of block 1 is due to the force exerted by block 2 during the moment change
Part f
Force of block 1 on block 2
True f12 = m1a1 f21 = m2a2
Part g
By the law of action and reaction are equal magnitude F12 = f21
Part H
dp / dt = 0
Isolated system F12 = F21 and the masses are constant. The total moment is only redistributed
<span>Density is a physical
property which describes the mass of a substance per unit of volume of the
substance. It is expressed as Density = m / V. We calculate as follows:
Density = m / V
V = volume of a cube = (edge length) ^3 = (2.65 cm) ^3 = 18.61 cm^3
Density = 50.3 g / 18.61 cm^3 = 2.70 g / cm^3</span>
Answer:
Astronauts who are orbiting the Earth often experience sensations of weightlessness. These sensations experienced by orbiting astronauts are the same sensations experienced by anyone who has been temporarily suspended above the seat on an amusement park ride. Not only are the sensations the same (for astronauts and roller coaster riders), but the causes of those sensations of weightlessness are also the same. Unfortunately however, many people have difficulty understanding the causes of weightlessness.
If gravity had no effect on a ball after you threw it ... and there also
were no air to slow it down ... then the ball would continue traveling
in a straight line, in whatever direction you threw it.
That's the heart and soul of Newton's laws of motion ... any object
keeps moving at the same speed, and in a straight line in the same
direction, until a force acts on it to change its speed or direction.\
If you threw the ball horizontally, then it would keep moving in the
same direction you threw it. But don't forget: The Earth is not flat.
The Earth is a sphere. So, as the ball kept going farther and farther
in the same straight line, the Earth would curve away from it, and it
would look like the ball is getting farther and farther from the ground.
Answer: 4.27 *10^6 N/C
Explanation: In order to calculate the electric field along the axis of charged ring we have to use the following expression:
E=k*x/(a^2+x^2)^3/2 where a is the ring radius and x the distance to the point measured from the center of the ring.
Replacing the data we have:
E= (9* 10^9* 0.3* 50 * 10^-6)/(0.1^2+0.3^2)^3/2
then
E=4.27 * 10^6 N/C