Convert cm into meters,
50/100=0.5m
work done= 10x0.5
=5J
we dont consider the weight of the spring as it acts downwards.
Answer:

Explanation:
wavelength 
d = 0.190 mm = 0.190 × 10⁻³ m
D = 1.91 m
By using the formula:


The first maximum will appear at an angle
from the beam axis
Answer: 5.96m/s
Explanation:
Given the following :
Mass of car (m) = 1500kg
Velocity (V) = 5.25m/s
Forward force of engine = 1250N
Diatance moved = 4.8m
Final Velocity =?
Final kinetic energy = Initial kinetic energy + work done by engine
Initial kinetic energy = 0.5 × mass × velocity^2
Initial kinetic energy = 0.5 × 1500 × 5.25^2
Initial kinetic energy = 20671.875 J
Work done by engine = Force × distance
Work done by engine = 1250 × 4.8 = 6000J
Final kinetic energy = (20671.875 + 6000) J
= 26671.875 J
From kinetic energy = 0.5mv^2
26671.875 = 1/2 × 1500 × v^2
53343.75 = 1500v^2
v^2 = 35.5625
v = sqrt(35.5625)
v = 5.96m/s
Answer:
a) Weight of the rock out of the water = 16.37 N
b) Buoyancy force = 4.61 N
c) Mass of the water displaced = 0.47 kg
d) Weight of rock under water = 11.76 N
Explanation:
a) Mass of the rock out of the water = Volume x Density
Volume = 470 cm³
Density = 3.55 g/cm³
Mass = 470 x 3.55 = 1668.5 g = 1.6685 kg
Weight of the rock out of the water = 1.6685 x 9.81 = 16.37 N
b) Buoyancy force = Volume x Density of liquid x Acceleration due to gravity.
Volume = 470 cm³
Density of liquid = 1 g/cm³

c) Mass of the water displaced = Volume of body x Density of liquid
Mass of the water displaced = 470 x 1 = 470 g = 0.47 kg
d) Weight of rock under water = Weight of the rock out of the water - Buoyancy force
Weight of rock under water = 16.37 - 4.61 =11.76 N
Its acceleration is 10ft/ sec