Answer:
The distance of the object placed on the principal axis from the concave mirror.
Explanation:
In a concave mirror, the nature of the image formed formed by the object placed in front of the mirror depends on the position of the object placed in from of the mirror. It all depends on the distance between the mirror and the object placed on the principal axis.
The closer the object is to the lens, the more larger or magnified the image formed will be. For example an object placed between the focal point and the pole of a concave produces a much larger image than an object placed beyond the centre of curvature of such mirror.
B. The velocity of the second flight is negative compared to the speed.
Answer:
780 m to travel north
Explanation:
6 m over = 750
53 degree so it will take about 2 min to reach the destination
Answer:
The corresponding magnetic field is
Explanation:
From the question we are told that
The electric field amplitude is 
Generally the magnetic field amplitude is mathematically represented as

Where c is the speed of light with a constant value

So


Since 1 T is equivalent to 

To find the ratio of planetary speeds Va/Vb we need the orbital velocity formula:
V=√({G*M}/R), where G is the gravitational constant, M is the mass of the distant star and R is the distance of the planet from the star it is orbiting.
So Va/Vb=[√( {G*M}/Ra) ] / [√( {G*M}/Rb) ], in our case Ra = 7.8*Rb
Va/Vb=[ √( {G*M}/{7.8*Rb} ) ] / [√( {G*M}/Rb )], we put everything under one square root by the rule: (√a) / (√b) = √(a/b)
Va/Vb=√ [ { (G*M)/(7.8*Rb) } / { (G*M)/(Rb) } ], when we cancel out G, M and Rb we get:
Va/Vb=√(1/7.8)/(1/1)=√(1/7.8)=0.358 so the ratio of Va/Vb = 0.358.