Lean your shoulders back and your waist forwards. Use your arms as a counter weight.
Answer: 6250 joules
Explanation:
The work needed to lift an object of mass M by a height H is equal to:
w = M*g*H
where h = 10m/s^2
then the total work that he did is equal to the sum of the work for every stone:
W = (100kg*g*H) + (120kg*g*H) + (140kg*g*H) + (160kg*g*H) + (180kg*g*H)
= (100kg + 120kg + 140kg + 160kg + 180kg)*g*H
= (500kg)*g*H
and now we can repalce g by 10m/s^2 and H by 125cm
But you can notice that we have two different units of distance, so knowing that 100cm = 1m
we can write H = 125cm = (125/100) m = 1.25 m
Then we have:
H = 500kg*10m/s^2*1.25m = 6250 J
The applied force is different for the two cases
The case A with a greater force involves the greatest momentum change
The case A involves the greatest force.
<h3>What is collision?</h3>
- This is the head-on impact between two object moving in opposite or same direction.
The initial momentum of the two ball is the same.
P = mv
where;
- m is the mass of each
- v is the initial velocity of each ball
Since the force applied by the arm is different, the final velocity of the balls before stopping will be different.
Thus, the final momentum of each ball will be different
The impulse experienced by each ball is different since impulse is the change in momentum of the balls.
J = ΔP
The force applied by the rigid arm is greater than the force applied by the relaxed arm because the force applied by the rigid arm will cause the ball to be brought to rest faster.
Thus, we can conclude the following;
- The applied force is different for the two cases
- The case A with a greater force involves the greatest momentum change
- The case A involves the greatest force.
Learn more about impulse here: brainly.com/question/25700778
Speed v = initial speed u + acceleration a x time t
v=u+at = 2 + 4*3 = 14 m/s
<h2>
Answer:</h2>
38.14Ω
<h2>
Explanation:</h2>
Let's solve this question using Ohm's law which states that the current (I) flowing through a conductor is directly proportional to the potential difference or voltage (V) across it. Mathematically;
V = I R -------------------(i)
<em>Where</em>;
R is the constant of proportionality called resistance of the conductor and is measured in Ohms (Ω)
<em>From the question;</em>
V = 18.5V
I = 0.485A
<em>Substitute these values into equation (i) as follows;</em>
18.5 = 0.485 x R
<em>Solve for R;</em>
R = 18.5 / 0.485
R = 38.14Ω
Therefore the resistance of the bulb is 38.14Ω