1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
3 years ago
8

"1.0 kg mass is attached to the end of a spring. The mass has an amplitude of 0.10 m and vibrates 2.0 times per second. Find its

speed when it passes the equilibrium position."
Physics
2 answers:
AleksandrR [38]3 years ago
6 0

Answer:

haha lol

Explanation:

sorry but i dont know this

prisoha [69]3 years ago
4 0

Answer:

1.3m/s

Explanation:

Data given,

Mass,m=1.0kg,

Amplitude,A=0.10m,

Frequency,f=2.0Hz.

From the equation of a simple harmonic motion, the displacement of the object at a given time is define as

x=Acos\alpha \\

we can express the velocity by the derivative of the displacement,

Hence

V=-Awsin\alpha \\

at equilibrium, the velocity becomes

V=wA\\w=2\pi f

Hence if we substitute values we arrive at

V=2\pi fA\\V=2\pi *2*0.1\\V=1.3m/s

You might be interested in
What from the following list of statements about vectors is definitely true? (section 3.3) The magnitude of a vector can be smal
Mashcka [7]

Answer:

"Magnitude of a vector can be zero only if all components of a vector are zero."

Explanation:

"The magnitude of a vector can be smaller than length of one of its components."

Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.

"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."

False. Magnitude of a vector is always positive.

"Magnitude of a vector can be zero if only one of components is zero."

Wrong. For the magnitude of a vector to be zero, all components must be zero.

"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."

Wrong. The magnitude of a vector depends on all components, not only the X component.

"Magnitude of a vector can be zero only if all components of a vector are zero."

True.

6 0
3 years ago
Consider a heat pump that operates on the reversed Carnot cycle with R-134a as the working fluid executed under the saturation d
Schach [20]

Answer:

Work out = 28.27 kJ/kg

Explanation:

For R-134a, from the saturated tables at 800 kPa, we get

h_{fg} = 171.82 kJ/kg

Therefore, at saturation pressure 140 kPa, saturation temperature is

T_{L} = -18.77°C = 254.23 K

At saturation pressure  800 kPa, the saturation temperature is

T_{H} = 31.31°C = 304.31 K

Now heat rejected will be same as enthalpy during vaporization since heat is rejected from saturated vapour state to saturated liquid state.

Thus, q_{reject} = h_{fg} = 171.82 kJ/kg

We know COP of heat pump

COP = \frac{T_{H}}{T_{H}-T_{L}}

        = \frac{304.31}{304.31-254.23}

         = 6.076

Therefore, Work out put, W = \frac{q_{reject}}{COP}

                                              = 171.82 / 6.076

                                              = 28.27 kJ/kg

8 0
4 years ago
Help me please, need more assistance
Dmitrij [34]

Explanation:

12) q = mCΔT

125,600 J = (500 g) (4.184 J/g/K) (T − 22°C)

T = 82.0°C

13) Solving for ΔT:

ΔT = q / (mC)

a) ΔT = 1 kJ / (0.4 kg × 0.45 kJ/kg/K) = 5.56°C

b) ΔT = 2 kJ / (0.4 kg × 0.45 kJ/kg/K) = 11.1°C

c) ΔT = 2 kJ / (0.8 kg × 0.45 kJ/kg/K) = 5.56°C

d) ΔT = 1 kJ / (0.4 kg × 0.90 kJ/kg/K) = 2.78°C

e) ΔT = 2 kJ / (0.4 kg × 0.90 kJ/kg/K) = 5.56°C

f) ΔT = 2 kJ / (0.8 kg × 0.90 kJ/kg/K) = 2.78°C

14) q = mCΔT

q = (2000 mL × 1 g/mL) (4.184 J/g/K) (80°C − 20°C)

q = 502,000 J

20) q = mCΔT

q = (2000 g) (4.184 J/g/K) (100°C − 15°C) + (400 g) (0.9 J/g/K) (100°C − 15°C)

q = 742,000 J

24) q = mCΔT

q = (0.10 g) (0.14 J/g/K) (8.5°C − 15°C)

q = -0.091 J

6 0
3 years ago
Which simple experiment could be conducted to show an example of how lightning is created? A) Rub a balloon so it picks up extra
alexandr1967 [171]

I think the answer is d

7 0
3 years ago
Please help! I'm not sure what equation or the process to do this question.
lions [1.4K]

Answer:

The momentum is 1.94 kg m/s.

Explanation:

To solve this problem we equate the potential energy of the spring with the kinetic energy of the ball.

The potential energy U of the compressed spring is given by

U = \dfrac{1}{2} kx^2,

where x is the length of compression and k is the spring constant.

And the kinetic energy of the ball is

K.E = \dfrac{1}{2}mv^2.

When the spring is released all of the potential energy of the spring goes into the kinetic energy of the ball; therefore,

\dfrac{1}{2}mv^2 = \dfrac{1}{2}kx^2,

solving for v we get:

v = x \sqrt{\dfrac{k}{m} }.

And since momentum of the ball is p=mv,

p =mx \sqrt{\dfrac{k}{m} }.

Putting in numbers we get:

p =(0.5kg)(0.25m) \sqrt{\dfrac{(120N/m)}{0.5kg} }.

\boxed{p=1.94kg\: m/s}

5 0
3 years ago
Other questions:
  • Which "spheres" are interacting when water evaporates from plants
    14·2 answers
  • A sinusoidal wave is traveling along a rope. The oscillator that generates the wave completes 43.0 vibrations in 29.0 s. A given
    10·1 answer
  • you weight 650 N. What would you wieght if the Earth were four times as massive as it is and its raduis were three times its pre
    14·1 answer
  • Im a very dumb human being plz help
    6·1 answer
  • Two slits are illuminated with green light (λ = 540 nm). The slits are 0.05 mm apart and the distance to the screen is 1.5 m. At
    10·1 answer
  • An increase in the atomic number____the atomic radius moving from
    8·1 answer
  • 6X-6=9<br><br> Solve for X<br><br> Round to TWO decimal places
    12·1 answer
  • 1. The term that describes where the supply curve intersects the demand curve is known as
    8·1 answer
  • You and your friend are pushes hard against a stationary wall. If you push 3 times harder than your friend, then the amount of w
    14·1 answer
  • Approximately what is the smallest detail observable with a microscope that uses ultraviolet light of frequency 1. 72 x 1015 hz?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!