1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet-ann [11.9K]
3 years ago
9

Is a man kicking ball potential or kinetic?

Physics
1 answer:
slava [35]3 years ago
5 0
Kinetic because the man is using energy to kick the ball

Hope this helps :)
You might be interested in
A 190 g air-track glider is attached to a spring. The glider is pushed in 8.6 cm against the spring, then released. A student wi
spin [16.1K]

Answer:

The spring constant = 9.25 N/m

Explanation:

The equation of an object attached to a spring that is oscillating is

T = 2π√(m/k)

Where T = period of the oscillation, m = mass of the object, k = spring constant.

Making k the subject of the equation,

k = 4π²m/T²......................... Equation 1

Note: Period(T) is the time taken to complete one oscillation

Given: T = t/10 = 9.0/10 = 0.9 s, m = 190 g = 0.19 kg.

Constant:  π = 3.14

Substitute these values into equation 1.

k = 4(3.14)²(0.19)/0.9²

k = 7.4933/0.81

k = 9.25 N/m

Thus the spring constant = 9.25 N/m

5 0
3 years ago
A rock is attached to the left end of a uniform meter stick that has the same mass as the rock. How far from the left end of the
kotykmax [81]

Answer:

M₂ = M  then L₂ = L

M₂> M  then L₂ = \frac{M}{M_{2}} L

Explanation:

This is a static equilibrium exercise, to solve it we must fix a reference system at the turning point, generally in the center of the rod. By convention counterclockwise turns are considered positive

          ∑ τ = 0

           

The mass of the rock is M and placed at a distance, L the mass of the rod M₁, is considered to be placed in its center of mass, which by uniform e is in its geometric center (x = 0) and the triangular mass M₂, with a distance L₂

The triangular shape of the second object determines that its mass can be considered concentrated in its geometric center (median) that tapers with a vertical line if the triangle is equilateral, the most used shape in measurements.

         M L + M₁ 0 - m₂ L₂ = 0

         M L - m₂ L₂ = 0

         L₂ = \frac{M}{M_{2}} L

From this answer we have several possibilities

* if the two masses are equal then L₂ = L

* If the masses are different, with M₂> M then L₂ = \frac{M}{M_{2}} L

6 0
3 years ago
What's effect called?<br>​
k0ka [10]

Answer:

what do u mean

Explanation:

8 0
3 years ago
Read 2 more answers
Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless
drek231 [11]

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

8 0
3 years ago
This mutation blank alter the protein function
mariarad [96]

Answer:

magsagot kau ng inyo wag kau mag hanap tseee hahahahhahahahahabababab

4 0
2 years ago
Other questions:
  • You arrive at an intersection with traffic lights that are not working because of a power outage. What do you do?
    7·2 answers
  • The two basic properties of matter are _
    7·2 answers
  • An ion of an element has 30 protons 32 neutrons and 29 electrons what is that charge and how did you make that determination
    13·2 answers
  • What constant acceleration in si units must a car have to go from zero to 60 mph in 10s. what fraction of g is this? How far has
    5·1 answer
  • Peter was holding a Human Physiology textbook that weighs about 4lbs with his non- writing arm for one minute. His elbow remaine
    11·1 answer
  • What is the displacement for a driver who travels 10 km to get to a point that is 4 km from his starting point
    12·1 answer
  • Need help!!!<br> Physics due tomorrow help, help ,help
    11·1 answer
  • A handbag weighing 162 N is carried by two students each holding the handle of the bag
    14·1 answer
  • The effect of gravity on a falling object can be modeled by a ball dropped from different heights. What is a limitation of this
    13·2 answers
  • 3. True or false. All objects that are made of metal<br> are magnetic. Explain why or why not.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!