The solubility of a substance in water is dependent on the temperature. Thus for
1 & 2: Temperature is the independent variable (the one that changes in the first place) and Solubility is a dependent variable (a variable that changes in response to changes in the independent variable.)
The graph: by convention you shall label the horizontal axis with the independent variable and the vertical axis with the dependent variable. For clarity's sake you shall use the finest scale possible that accommodates for all data provided for both axis. Plot the data points on the graph as if they are points on a cartesian plane.
My teacher made no detailed requirements on the phrasing on titles of solubility curve plots; however, like most other graphs in chemistry, the title shall specify the name of variables presented in this visualization. For instance, "the solubility of
under different temperatures" might do. You shall refer to your textbooks for such convention.
It is necessary to interpolate to find the solubility at a temperature not given in the table. Start by connecting all given data points with a smooth line; find the vertical line corresponding to temperature = 75 degree Celsius and determine the solubility at the intersection of the vertical line and the trend line. That point shall approximates the solubility of the salt at that temperature.
Balanced equation :
1 CaCO3(s) = 1 CaO(s) + 1 CO2(g)
hope this helps!
Why not search it up and figure it out and then write it how you would?
Answer:
The answer is
<h2>0.95 atm</h2>
Explanation:
To solve the question we use the following conversion
That's
1 mmHg
0.0013 atm
So we have
If 1 mmHg
0.0013 atm
Then 732 mmHg will be
732 × 0.0013 atm
We have the final answer as
<h3>0.95 atm</h3>
Hope this helps you
Answer:
85.5 mmHg is the pressure of the gas sample when the valve is opened.
Explanation:
The combined gas equation is,

where,
= initial pressure of gas in container A = 165 mmHg
= final pressure of gas = ?
= initial volume of gas in container A= 
= final volume of gas = 135 mL + 117 mL = 252 mL
= initial temperature of gas in container A = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:



85.5 mmHg is the pressure of the gas sample when the valve is opened.