1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blondinia [14]
3 years ago
9

If the horizontal component of a vector is 6 m/s and the vertical component is also 6 m/s, what is the resultant value of the ve

ctor?
A. 6 m/s
B. 8.5 m/s
C. 10.4 m/s
D. 12 m/s
Physics
1 answer:
BlackZzzverrR [31]3 years ago
6 0
Resultant force= (2*6^2)^(1/2)
=8.5m/s
answer is B.
You might be interested in
Over a 24-hour period, the tide in a harbor can be modeled by one period of a sinusoidal function. the tide measures 5.15 ft at
RSB [31]
<span>f(x) = 5.05*sin(x*pi/12) + 5.15

   First, you need to determine the period of the function. The period will be the time interval between identical points on the sinusoidal function. For this problem, the tide is rising and at 5.15 at midnight for two consecutive days. So the period is 24 hours. Over that 24 hour period, we want the parameter passed to sine to range from 0 to 2*pi. So the scale factor for x will be 2*pi/24 = pi/12 which is approximately 0.261799388. The next thing to note is the magnitude of the wave. That will simply be the difference between the maximum and minimum values. So 10.2 ft - 0.1 ft = 10.1 ft. And since the value of sine ranges from -1 to 1, we need to divide that magnitude by 2, so 10.1 ft / 2 = 5.05 ft.

   So our function at this point looks like f(x) = 5.05*sin(x*pi/12) But the above function ranges in value from -5.05 to 5.05. So we need to add a bias to it in order to make the low value equal to 0.1. So 0.1 = X - 5.05, 0.1 + 5.05 = X, 5.15 = X. So our function now looks like:
  f(x) = 5.05*sin(x*pi/12) + 5.15

   The final thing that might have been needed would have been a phase correction. With this problem, we don't need a phase correction since at X = 0 (midnight), the value of X*pi/12 = 0, and the sine of 0 is 0, so the value of the equation is 5.15 which matches the given value of 5.15. But if the problem had been slightly different and the height of the tide at midnight has been something like 7 feet, then we would have had to calculate a phase shift value for the function and add that constant to the parameter being passed into sine, making the function look like:
 f(x) = 5.05*sin(x*pi/12 + C) + 5.15
  where
 C = Phase correction offset.

   But we don't need it for this problem, so the answer is:
 f(x) = 5.05*sin(x*pi/12) + 5.15

   Note: The above solution assumes that angles are being measured in radians. If you're using degrees, then instead of multiplying x by 2*pi/24 = pi/12, you need to multiply by 360/24 = 15 instead, giving f(x) = 5.05*sin(x*15) + 5.15</span>
7 0
3 years ago
This chemical equation represents the burning of methane, but the equation is incomplete. What is the missing coefficient in bot
kolezko [41]
Your complete chemical equation is CH4+O2=CO3+H2O
8 0
3 years ago
Read 2 more answers
LOTS OF POINTSA rocket of mass 40 000 kg takes off and flies to a height of 2.5 km as its engines produce 500 000 N of thrust.
Svetradugi [14.3K]

Answer:

i) E = 269 [MJ]    ii)v = 116 [m/s]

Explanation:

This is a problem that encompasses the work and principle of energy conservation.

In this way, we establish the equation for the principle of conservation and energy.

i)

E_{k1}+W_{1-2}=E_{k2}\\where:\\E_{k1}= kinetic energy at moment 1\\W_{1-2}= work between moments 1 and 2.\\E_{k2}= kinetic energy at moment 2.

W_{1-2}= (F*d) - (m*g*h)\\W_{1-2}=(500000*2.5*10^3)-(40000*9.81*2.5*10^3)\\W_{1-2}= 269*10^6[J] or 269 [MJ]

At that point the speed 1 is equal to zero, since the maximum height achieved was 2.5 [km]. So this calculated work corresponds to the energy of the rocket.

Er = 269*10^6[J]

ii ) With the energy calculated at the previous point, we can calculate the speed developed.

E_{k2}=0.5*m*v^2\\269*10^6=0.5*40000*v^2\\v=\sqrt{\frac{269*10^6}{0.5*40000} }\\ v=116[m/s]

8 0
3 years ago
Activity
vodka [1.7K]
Your welcome LOL plz like

5 0
2 years ago
.A box falls to the ground from a delivery truck traveling at 30 m/s. After hitting the road, it slides 45 m to
Romashka-Z-Leto [24]

Answer:

t = 3 seconds

Explanation:

Given that,

Initial speed, u = 30 m/s

Final speed, v = 0

It slides 45 m to rest.it take the box to come to rest

We need to find how long it take the box to come to rest.

Let a be the acceleration and t is time.

v^2-u^2=2ad\\\\a=\dfrac{v^2-u^2}{2d}\\\\a=\dfrac{(30)^2-u^2}{2(45)}\\\\=10\ m/s^2

Now finding time.

t=\dfrac{v-u}{a}\\\\t=\dfrac{30-0}{10}\\\\t=3\ s

So, the required time is 3 seconds.

8 0
3 years ago
Other questions:
  • Why did most scientist reject wegeners theory for nearly a half century
    10·2 answers
  • What is the difference between charles law and boyle's law?
    7·1 answer
  • 1. If the strength of the magnetic field at B is 3 units, the strength of the magnetic field at A is _____.
    13·1 answer
  • A 1,492.3-kg airplane travels down the runway. Each of its four engines provides a force of
    6·1 answer
  • A stone is thrown vertically into the air at an initial velocity of 96 ft/s. On Mars, the height s (in feet) of the stone above
    5·1 answer
  • Name 10 transition metals
    9·1 answer
  • Difference between Pascal’s law and law of flotation
    14·1 answer
  • GIVING BRAINLIEST PLEASE HELP!!
    11·1 answer
  • Un muelle se alarga 20 cm cuando ejercemos sobre él una fuerza de 24 N. Calcula:El valor de la constante elástica del muelle
    12·1 answer
  • How much work is done lifting a 9.10-kg box straight up onto a shelf that is 1.80 m high
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!