Answer:
Invisible UV energy reacts with emulsion sensitizer and hardens the stencil so it won't dissolve with water and rinse down the drain
Explanation:
When you bring two objects of different temperature together, energy will always be transferred from the hotter to the cooler object. The objects will exchange thermal energy, until thermal equilibrium is reached, i.e. until their temperatures are equal. We say that heat flows from the hotter to the cooler object. Heat is energy on the move.
Units of heat are units of energy. The SI unit of energy is Joule. Other often encountered units of energy are 1 Cal = 1 kcal = 4186 J, 1 cal = 4.186 J, 1 Btu = 1054 J.
Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.
This is a great problem if you like getting tied up in knots
and making smoke come out of your brain.
I found that it makes the problem a lot easier if I give the objects some
numbers. I'm going to say that the mass of Object 5 is 20 clods.
Let the mass of Mass of Object 5 be 20 clods .
Then . . .
-- The mass of Object 2 is double the mass of Object 5 = 40 clods.
-- The mass of Object 4 is half of the mass of Object 5 = 10 clods.
and
-- the mass of Object 3 is half of the mass of Object 4 = 5 clods.
So now, here are the masses:
Object #1 . . . . . unknown
Object #2 . . . . . 40 clods
Object #3 . . . . . 5 clods
Object #4 . . . . . 10 clods
Object #5 . . . . . 20 clods .
Now let's check out the statements, and see how they stack up:
Choice-A:
Object 3 and Object 5 exert the same gravitational force on Object 1.
Can't be.
Objects #3 and #5 have different masses, so they can't both
exert the same force on the same mass.
Choice-B.
Object 2 and Object 4 exert the same gravitational force on Object 1.
Can't be.
Objects #2 and #4 have different masses, so they can't both
exert the same force on the same mass.
Choice-C.
The gravitational force between Object 1 and Object 2 is greater than
the gravitational force between Object 1 and Object 4.
Yes ! Yay !
Object-2 has more mass than Object-4 has, so it must exert more force on
ANYTHING than Object-4 does, (as long as the distances are the same).
Choice-D.
The gravitational force between Object 1 and Object 3 is greater than the gravitational force between Object 1 and Object 5.
Can't be.
Object-3 has less mass than Object-5 has, so it must exert less force on
ANYTHING than Object-4 does, (as long as the distances are the same).
Conclusion:
If the DISTANCE is the same for all the tests, then Choice-C is
the only one that can be true.
Answer:
40
Explanation:
Mechanical advantage = effort arm / load arm
MA = 20 cm / 0.5 cm
MA = 40
Answer: Option (c) is the correct answer.
Explanation:
When a penny is dropped from a height of 20 meters then it will achieve an acceleration.
As acceleration is the rate of change in velocity of an object with respect to time. Therefore, the velocity does not remain constant.
Whereas mass of the penny will remain the same as it will not get affected when it falls. Also, there will be no change in direction of the penny as it is falling only in one direction.
The acceleration of penny is due to the force of gravity.
Thus, we can conclude that the force of gravity causes it to accelerate.