By compressing the spring a distance <em>x</em> (in m), you are storing 1/2 <em>k</em> <em>x</em> ² (in J) of potential energy, which is converted completely into kinetic energy 1/2 <em>m v</em> ², where
• <em>k</em> = 40 N/m = spring constant
• <em>m</em> = 10 kg = mass of the ball
• <em>v</em> = 2 m/s = ball's speed (at the moment the spring returns to its equilibrium point)
So we have
1/2 <em>k</em> <em>x</em> ² = 1/2 <em>m</em> <em>v</em> ²
<em>x</em> = √(<em>m</em>/<em>k</em> <em>v</em> ²) = √((10 kg) / (40 N/m) (2 m/s)²) = 1 m
Answer:
20 m
Explanation:
Initial potential energy = final kinetic energy
mgh = 1/2 mv²
gh = 1/2 v²
h = v² / (2g)
Given v = 20 m/s and g = 10 m/s²:
h = (20 m/s)² / (2 × 10 m/s²)
h = 20 m
Answer:

Explanation:
The speed of light through a medium is given by:

where
is the speed of light through vacuum
n is the index of refraction of the material
In this case, diamond has a refractive index of n = 2.4, so the speed of light in diamond is
