Answer:
119.35 mm
Explanation:
Given:
Inside diameter, d = 100 mm
Tensile load, P = 400 kN
Stress = 120 MPa
let the outside diameter be 'D'
Now,
Stress is given as:
stress = Load × Area
also,
Area of hollow pipe =
or
Area of hollow pipe =
thus,
400 × 10³ N = 120 ×
or
D² = tex]\frac{400\times10^3+30\pi\times10^4}{30\pi}[/tex]
or
D = 119.35 mm
Complete Question:
A metal plate of 400 mm in length, 200mm in width and 30 mm in depth is to be machined by orthogonal cutting using a tool of width 5mm and a depth of cut of 0.5 mm. Estimate the minimum time required to reduce the depth of the plate by 20 mm if the tool moves at 400 mm per second.
Answer:
26 mins 40 secs
Explanation:
Reduction in depth, Δd = 20 mm
Depth of cut, 
Number of passes necessary for this reduction, 
n = 20/0.5
n = 40 passes
Tool width, w = 5 mm
Width of metal plate, W = 200 mm
For a reduction in the depth per pass, tool will travel W/w = 200/5 = 40 times
Speed of tool, v = 100 mm/s

minimum time required to reduce the depth of the plate by 20 mm:
number of passes * Time/pass
n * Time/pass
40 * 40
1600 = 26 mins 40 secs
Answer:
The entity relationship (ER) data model has existed for over 35 years. It is well suited to data modelling for use with databases because it is fairly abstract and is easy to discuss and explain. ER models are readily translated to relations. ER models, also called an ER schema, are represented by ER diagrams.
Answer:
porosity = 0.07 or 7%
dry bulk density = 3.25g/cm3]
water content =
Explanation:
bulk density = dry Mass / volume of sample
dry mass = 0.490kg = 490g
volume = πr2h = 3.142 * 2 *2 *12 = 150.8cm3
density = 490/150.8 = 3.25g/cm3
porosity =
=
= 0.07 or 7%
water content =
= 7%
True, In the STEM field engineers use and think in terms of sciences like physics and math.