Answer:
In engineering design, failure is expected. It helps you find the best solutions before implementing them in the “real world”. Having a prototype fail is a GOOD thing, because that means you have learned something new about the problem and potential solutions.
Explanation:
Neither of the two technicians (Technician A and Technician B) is correct.
<h3>What is an
engine vacuum?</h3>
An engine vacuum can be defined as a type of engine which is designed and developed to derive its force from air pressure that's being pushed against one side of the piston of an automobile, while having a partial vacuum on the other side.
In this scenario, we can infer and logically conclude that neither of the two technicians (Technician A and Technician B) is correct because engine vacuum is high when the engine is operating under light loads and vice-versa.
Read more on engine vacuum here: brainly.com/question/14602340
#SPJ12
Answer:
<em>the % recovery of aluminum product is 80.5%</em>
<em>the % purity of the aluminum product is 54.7%</em>
<em></em>
Explanation:
feed rate to separator = 2500 kg/hr
in one hour, there will be 2500 kg/hr x 1 hr = 2500 kg of material is fed into the machine
of this 2500 kg, the feed is known to contain 174 kg of aluminium and 2326 kg of rejects.
After the separation, 256 kg is collected in the product stream.
of this 256 kg, 140 kg is aluminium.
% recovery of aluminium will be = mass of aluminium in material collected in the product stream ÷ mass of aluminium contained in the feed material
% recovery of aluminium = 140kg/174kg x 100% = <em>80.5%</em>
% purity of the aluminium product = mass of aluminium in final product ÷ total mass of product collected in product stream
% purity of the aluminium product = 140kg/256kg
x 100% = <em>54.7%</em>
Generally, frictional losses are more predominant for the machines being not 100% efficient. This friction leads to the loss of energy in the form of heat, into the surroundings. Some of the supplied energy may be utilised to change the entropy (measure of randomness of the particles) of the system.
D is the answer. Hope this helped