Answer:
L = 0.99 m = 99 cm
Explanation:
The period is the reciprocal of the frequency.
T = 1/0.5 = 2.0 s
T = 2π√(L/g)
L = g(T/2π)²
L = 9.8(2.0/2π)² = 0.99 m
If the system accelerates upward, it will cause the apparent gravity to increase. This will require a longer pendulum to keep the same period, or shorten the period if the length remains the same. This shows up in the equation where the product of gravity and the square of the period must remain constant for the length to remain constant.
On the periodic table, electronegativity generally increases as you move from left to right across a period and decreases as you move down a group. As a result, the most electronegative elements are found on the top right of the periodic table, while the least electronegative elements are found on the bottom left.
Answer:
When the northern hemisphere experiences autumn, the southern hemisphere experiences <u><em>spring</em></u>
Explanation:
When the northern hemisphere experiences autumn, the southern hemisphere experiences <u><em>spring</em></u>
This is due to the equinoxes. An equinox is an event that occurs twice a year. During these seasons all areas of the Earth's surface experience an equal amount of daylight and darkness. The sun is on the equator line, so the day and night in both hemispheres have the same duration. At that time the part of the Earth closest to the Sun is the equator.
The shape of the Earth means that while the spring equinox is experienced in the northern hemisphere, the autumn equinox is entered in the southern hemisphere.
Answer:

Explanation:
Since the two charged bodies are symmetric, we can calculate the electric field taking both of them as point charges.
This can be easily seen if we use Gauss's law, 
We take a larger sphere of radius, say r, as the Gaussian surface. Then the electric field due to the charged sphere at a distance r from it's center is given by,

which is the same as that of a point charge.
In our problem the charges being of opposite signs, the electric field will add up. Therefore,

where,
= distance between the center of one sphere to the midpoint (between the 2 spheres)