1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
It Would Take Aprroximately 1000 Years.
Answer:
Energy is absorbed, so the mass is reduced.
Explanation:
The relationship between the mass and the energy is given by Einstein formula as :

m is the mass of an atom
c is the speed of light
When an atom is formed, the energy gets absorbed. As a result mass will decrease as per Einstein's equation. So, the correct option is (c) "Energy is absorbed, so the mass is reduced".
The intensity of the magnetic force F experienced by a charge q moving with speed v in a magnetic field of intensity B is equal to

where

is the angle between the directions of v and B.
1) Re-arranging the previous formula, we can calculate the value of the magnetic field intensity. The charge is

. In this case, v and B are perpendicular, so

, therefore we have:

2) In this second case, the angle between v and B is

. The charge is now

, and the magnetic field is the one we found in the previous part, B=2.8 T, so we can find the intensity of the force experienced by this second charge:
Answer:
d = 3.5*10^4 m
Explanation:
In order to calculate the displacement of the airplane you need only the information about the initial position and final position of the airplane. THe initial position is at the origin (0,0,0) and the final position is given by the following vector:

The displacement of the airplane is obtained by using the general form of the Pythagoras theorem:
(1)
where x any are the coordinates of the final position of the airplane and xo and yo the coordinates of the initial position. You replace the values of all variables in the equation (1):

hence, the displacement of the airplane is 3.45*10^4 m