Answer:
I dont know lol sorry ddhd
While skydiving, its not just freely falling under Earth's gravity. Additional force called drag acts against the gravity which slows down the rate of fall. Drag is caused by the air molecules which pushes against the body as it falls through them. This is actually a significant amount of force which slows down the rate of fall of the body. Drag depends on the contact surface area and weight. More the surface area in contact, more would be the drag. The sitting position of the skydiver would experience less drag than the chest down position because of the less contact surface area of the body with the air molecules while in the former case. No two persons have identical body shape and weight. Hence, the rate of fall can be made nearly equal but not exactly equal. This is would be possible when they are having same body position.
Answer:
Explanation:
Let the plastic rod extends from - L to + L .
consider a small length of dx on the rod on the positive x axis at distance x . charge on it = λ dx where λ is linear charge density .
It will create a field at point P on y -axis . Distance of point P
= √ x² + .15²
electric field at P due to small charged length
dE = k λ dx x / (x² + .15² )
Its component along Y - axis
= dE cosθ where θ is angle between direction of field dE and y axis
= dE x .15 / √ x² + .15²
= k λ dx .15 / (x² + .15² )³/²
If we consider the same strip along the x axis at the same position on negative x axis , same result will be found . It is to be noted that the component of field in perpendicular to y axis will cancel out each other . Now for electric field due to whole rod at point p , we shall have to integrate the above expression from - L to + L
E = ∫ k λ .15 / (x² + .15² )³/² dx
= k λ x L / .15 √( L² / 4 + .15² )
Answer : The final temperature is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of ice = 
= specific heat of water = 
= mass of ice = 50 g
= mass of water = 200 g
= final temperature = ?
= initial temperature of ice = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the final temperature is, 
This question is poorly stated, but I assume you mean what conditions are needed. It would have to be cold outside, correct?