I think these gases are water vapor and nitrogen. As the temperature rises, these water vapor molecules, would condense and form the oceans we have. Also, it was said that in the early atmosphere, nitrogen is very abundant and even today the composition of air is 79% by volume.
1. it is difficult to search for it . Because infrared rays will never penetrate through earth atmosphere.
2. we are unaware of how it looks like and we only know it is red and will glow . A damaged star also looks like this.
3. Dust also makes is hard to detect Dyson spheres . So we will get confused between Dyson sphere and a star surrounded by dust.
Answer:
t = 2.2 s
Explanation:
Given that,
Height of the roof, h = 24.15 m
The initial velocity of the pumpkin, u = 0
We need to find the time taken for the pumpkin to hit the ground. Let the time be t. Using second equation of kinematics to find it as follows :

Here, u = 0 and a = g

So, it will take 2.22 s for the pumpkin to hit the ground.
Answer:
1.68 s
Explanation:
From newton's equation of motion,
a = (v-u)/t.................................. Equation 1
Making t the subject of the equation
t =(v-u)g............................. Equation 2
Where t = time taken for the bowling pin to reach the maximum height, v = final velocity bowling pin, u = initial velocity of the bowling pin, g = acceleration due to gravity.
Note: Taking upward to be negative and down ward to be positive,
Given: v = 0 m/s ( at the maximum height), u = 8.20 m/s, g = -9.8 m/s²
t = (0-8.20)/-9.8
t = -8.20/-9.8
t = 0.84 s.
But,
T = 2t
Where T = time taken for the bowling pin to return to the juggler's hand.
T = 2(0.84)
T = 1.68 s.
T = 1.68 s
Answer:
the extension recorded by the student would be smaller than the actual extension of the spring