Answer:
option (E) is correct.
Explanation:
Work done is defined as the product of force and the distance in the direction of force.
force, f = 100 N
Coefficient of friction, = 0.25
distance = 15 m
So, net force F = f - friction force
F = 100 - 0.25 x m g
Work = (100 - 0.25 mg) x d cosθ
For minimum work, the angle should be maximum.
So, the value of θ is 76°.
thus, option (E) is correct.
Since everything in the circuit is in series .. .
-- The total resistance is (3 + 2) = 5 ohms.
-- The voltage across the 3-ohm resistor is 3/5 of the total voltage.
-- The voltage across the 2-ohm resistor is 2/5 of the total voltage.
(2/5) of (9 volts) = 18/5 = 3.6 volts .
Constant velocity means the netto force = 0, therefore F(gravity) = F(astronaut).
175N divided by 87,5kg = 2.00kg/N
Complete question:
A diver is 10 m below the surface of water. Calculate the pressure the fluid exerted on the diver. The acceleration of gravity is 9.8 m/s2 and the density of the water is 1000 kg/m3. Answer in units of Pa. Show your work.
Answer:
Tthe pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
Explanation:
Given;
density of water, ρ = 1000 kg/m³
diver's position below the surface of the water, h = 10 m
acceleration due to gravity, g = 9.8 m/s²
Let the atmospheric pressure, P₀ = 101325 Pa
The pressure 10 m below the surface of the water is calculated as;
P = P₀ + ρgh
P = 101325 Pa + (1000 x 9.8 x 10)Pa
P = 199325 Pa
P = 1.99 x 10⁵ Pa.
Therefore, the pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa