a. 7.0 m/s
First of all, we need to convert the angular speed (1200 rpm) from rpm to rad/s:

Now we know that the row is located 5.6 cm from the centre of the disc:
r = 5.6 cm = 0.056 m
So we can find the tangential speed of the row as the product between the angular speed and the distance of the row from the centre of the circle:

b. 
The acceleration of the row of data (centripetal acceleration) is given by

where we have
v = 7.0 m/s is the tangential speed
r = 0.056 m is the distance of the row from the centre of the trajectory
Substituting numbers into the formula, we find

The cabinet is being pulled with 200N and is being rested by a force equal to 200N. That is why it is not being moved.
<span>Although the force of static friction can equal Fk=µs*F=m*g*µs=(30kg)*(9.8m/s^2)*(0.80)=235 N. It is not resisting the 200N force with 235N. Imagine if you pushed something with 200N and it pushed you back with 235N, especially a cabinet. You would think that the cabinet was alive.</span>
Volumes of liquids such as water can be readily measured in a graduated cylinder.
in this since your volume remains at a constant you'll need to use Gay-Lussacs law, p1/t1=p2/t2.
your temp should be converted in kelvin
variables:
p1=3.0×10^6 n/m^2
t1= 270k
just add 273 to your celcius
p2= ? your solving for this
t2= 315k
then you set up the equation
(3.0×10^6)/270= (x)(315)
you then cross multiply
(3.0×10^6)315=270x
distribute the 315 to the pressure.
9.45×10^8=270x then you divide 270 o both sides to get
answer
3.5×10^6 n/m^2
Answer:
THWB WB WQI B BW W;QQ QY G VQ Q VQVY VAV G UQ U
Explanation:QCGQ G GQUIGI QGUI; V AYDFYAFQAVAVY,