Answer:
8 moles of CO
Explanation:
To produce carbon monoxide we begin from C and O₂ as this reaction shows:
2C + O₂ → 2CO
Therefore, 2 moles of C can produce 2 moles of CO
If I have 8 moles of C, I must produce 8 moles of CO
Ratio is 1:1
Answer:
Double replacement:
Explanation:
Chemical equation:
2AsCl + 3H₂S → As₂S₃ + 6HCl
The given reaction is double displacement reaction. In this reaction arsenic trichloride and hydrogen sulfide react and produced arsenic sulfide and hydrogen chloride. In double displacement reaction both anion an cation of reactants are exchanged with each other.
Double replacement:
It is the reaction in which two compound exchange their ions and form new compounds.
General equation:
AB + CD → AD +CB
<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of ammonium carbonate and lead nitrate is given as:

Ionic form of the above equation follows:

As, ammonium and nitrate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.
<span>Several
important pollutants are produced by fossil fuel combustion: carbon
monoxide, nitrogen oxides, sulfur oxides, and hydrocarbons. In addition,
total suspended particulates contribute to air pollution, and nitrogen
oxides and hydrocarbons can combine in the atmosphere to form
tropospheric ozone, the major constituent of smog.
Carbon monoxide is a gas formed as a by-product during the incomplete
combustion of all fossil fuels. Exposure to carbon monoxide can cause
headaches and place additional stress on people with heart disease. Cars
and trucks are the primary source of carbon monoxide emissions.
Two oxides of nitrogen--nitrogen dioxide and nitric oxide--are formed in
combustion. Nitrogen oxides appear as yellowish-brown clouds over many
city skylines. They can irritate the lungs, cause bronchitis and
pneumonia, and decrease resistance to respiratory infections. They also
lead to the formation of smog. The transportation sector is responsible
for close to half of the US emissions of nitrogen oxides; power plants
produce most of the rest.
Sulfur oxides are produced by the oxidization of the available sulfur in
a fuel. Utilities that use coal to generate electricity produce
two-thirds of the nation's sulfur dioxide emissions. Nitrogen oxides and
sulfur oxides are important constituents of acid rain. These gases
combine with water vapor in clouds to form sulfuric and nitric acids,
which become part of rain and snow. As the acids accumulate, lakes and
rivers become too acidic for plant and animal life. Acid rain also
affects crops and buildings.
Hydrocarbons are a broad class of pollutants made up of hundreds of
specific compounds containing carbon and hydrogen. The simplest
hydrocarbon, methane, does not readily react with nitrogen oxides to
form smog, but most other hydrocarbons do. Hydrocarbons are emitted from
human-made sources such as auto and truck exhaust, evaporation of
gasoline and solvents, and petroleum refining.
The white haze that can be seen over many cities is tropospheric ozone,
or smog. This gas is not emitted directly into the air; rather, it is
formed when ozone precursors mainly nonmethane hydrocarbons and nitrogen
oxides react in the presence of heat and sunlight. Human exposure to
ozone can produce shortness of breath and, over time, permanent lung
damage. Research shows that ozone may be harmful at levels even lower
than the current federal air standard. In addition, it can reduce crop
yields.
Finally, fossil fuel use also produces particulates, including dust,
soot, smoke, and other suspended matter, which are respiratory
irritants. In addition, particulates may contribute to acid rain
formation.
Also, water and land pollution.
</span>
Answer:
Molar mass = 99 g/mol
Explanation:
Phosgene contains carbon, oxygen and chlorine atoms. Its molecular formular is; COCl2
The molar mass is given as the sum off the individual atomic mass of the elements in the compound.
Molar mass = C + O + 2Cl
Molar mass = 12 + 16 + 2(35.5)
Molar mass = 99 g/mol