Answer:
The acceleration is
and the distance covered is 97.17 m.
Explanation:
Given that,
Initial speed of an automobile, u = 60 km/hr = 16.67 m/s
Final speed of an automobile, v = 80 km/hr = 22.2 m/s
Time, t = 5 s
We need to find the acceleration of the car and the distance traveled in this 5 sec interval. Let a is the acceleration. Using the definition of acceleration as :

Let d is the distance covered. Using the third equation of motion to find it as follows :

So, the acceleration is
and the distance covered is 97.17 m.
Answer:
Useable energy, electricity
Answer:
The acceleration of the box is 3 m/s²
Explanation:
Given;
mass of the box, m = 12 kg
horizontal force pulling the box forward, Fx = 48 N
frictional force acting against the box in opposite direction, Fk = 12 N
The net horizontal force on the box, F = 48 N - 12 N
The net horizontal force on the box, F = 36 N
Apply Newton's second law of motion to determine the acceleration of the box;
F = ma
where;
F is the net horizontal force on the box
a is the acceleration of the box
a = F / m
a = 36 / 12
a = 3 m/s²
Therefore, the acceleration of the box is 3 m/s²
The answer is d because you are using energy to pull the sled back up, which is mechanical energy
Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. It can either be kinetics or potential. In this problem you know it starting position so you can calculate it's potential energy (PE):
<span>PE=mass∗gravity∗height=0.3kg∗9.8m/s2∗1.8m=?
</span>The answer will typically be given in joules:
1J=kg∗m2s2 Could be wrong... But I believe it is 5.3...? as a final product.