Answer:
 
it will double because im right
 
        
             
        
        
        
Jesus, jesus is always the answer
        
                    
             
        
        
        
Answer:
741 J/kg°C
Explanation:
Given that
Initial temperature of glass, T(g) = 72° C
Specific heat capacity of glass, c(g) = 840 J/kg°C
Temperature of liquid, T(l)= 40° C
Final temperature, T(2) = 57° C
Specific heat capacity of the liquid, c(l) = ?
Using the relation 
Heat gained by the liquid = Heat lost by the glass 
m(l).C(l).ΔT(l) = m(g).C(g).ΔT(g)
Since their mass are the same, then
C(l)ΔT(l) = C(g)ΔT(g)
C(l) = C(g)ΔT(g) / ΔT(l)
C(l) = 840 * (72 - 57) / (57 - 40)
C(l) = 12600 / 17
C(l) = 741 J/kg°C
 
        
             
        
        
        
Answer:
The vertical distance is  ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
Explanation:
From the question we are told that 
    The mass of the cylinder is  m 
     The kinetic frictional force is  f
Generally from the work energy theorem 
     
Here E the the energy of the spring which is increasing and this is mathematically represented as 
        
Here k is the spring constant
         P is the potential energy of the cylinder which is mathematically represented as 
      
And 
       is the workdone by friction which is mathematically represented as
  is the workdone by friction which is mathematically represented as 
       
So 
     
=>    ![\frac{1}{2} * k  *  d^2 =  d[mg +  f    ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%5E2%20%3D%20%20d%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=>  ![\frac{1}{2} * k  *  d =  [mg +  f    ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%20%3D%20%20%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
 
        
             
        
        
        
Before the skydiver opens the parachute, his velocity would be increasing greatly as much as 9.8 m/s². Opening the parachute would increase the surface area to which air may cause resistance. The skydiver then reaches his terminal velocity.