<span>Waves that move matter back and forth are called a.transverse waves <u>b.longitudinal wave</u> c. Medium wave</span>
a) See free-body diagram in attachment
b) The acceleration is 
Explanation:
a)
The free-body diagram of an object is a diagram representing all the forces acting on the object. Each force is represented by a vector of length proportional to the magnitude of the force, pointing in the same direction as the force.
The free-body diagram for this object is shown in the figure in attachment.
There are three forces acting on the object:
- The weight of the object, labelled as
(where m is the mass of the object and g is the acceleration of gravity), acting downward - The applied force,
, acting up along the plane - The force of friction,
, acting down along the plane
b)
In order to find the acceleration of the object, we need to write the equation of the forces acting along the direction parallel to the incline. We have:

where:
is the applied force, pushing forward
is the frictional force, acting backward
is the component of the weight parallel to the incline, acting backward, where
m = 2 kg is the mass of the object
is the acceleration of gravity
is the angle between the horizontal and the incline (it is not given in the problem, so I assumed this value)
a is the acceleration
Solving for a, we find:

Learn more about inclined planes:
brainly.com/question/5884009
#LearnwithBrainly
Answer:
t = 2 s
Explanation:
As we know that fish is pulled upwards with uniform maximum acceleration
then we will have

here we know that maximum possible acceleration of so that string will not break is given as

now we have


now for such acceleration we can use kinematics


t = 2 s
1.3s
Explanation:
Given parameters:
Height = 1.4m
Gravity on moon = 1.67ms⁻¹
Unknown:
Time for feather to fall = ?
Solution:
To solve this problem, we are going to use one of the motion equation that relates time, gravity and height.
H = ut + 
Sine the body was dropped from rest, initial velocity is zero;
H = height
u = initial velocity
t = time
g = acceleration due to gravity
since u = 0;
H = 
1.4 =
x 1.67 x t²
t = 1.3s
learn more:
Gravity brainly.com/question/10934170
#learnwithBrainly
Answer:
warmer air
Explanation:
the particles are more excited which increases the probability that the particles will bump into each other