The universe is made of a lot of galaxies. The likely explanation for a galaxy having more than one nucleus is that the galaxy must have swallowed several smaller galaxies that were its neighbors.
- There are some reason behind the theory that the eating up of a galaxy is by another galaxy. The galaxy is said to have a powerful past due to the fact that a lot of smaller galaxies were eaten up.
The universe is known to have a very largest galaxy called the giant elliptical galaxy that is made up of about a trillion stars.
Learn more from
brainly.com/question/22885678
This type of a problem can be solved by considering energy transformations. Initially, the spring is compressed, thus having stored something called an elastic potential energy. This energy is proportional to the square of the spring displacement d from its normal (neutral position) and the spring constant k:

So, this spring is storing almost 12 Joules of potential energy. This energy is ready to be transformed into the kinetic energy when the masses are released. There are two 0.2kg masses that will be moving away from each other, their total kinetic energy after the release equaling the elastic energy prior to the release (no losses, since there is no friction to be reckoned with).
The kinetic energy of a mass m moving with a velocity v is given by:

And we know that the energies are conserved, so the two kinetic energies will equal the elastic potential one:

From this we can determine the speed of the mass:

The speed will be 7.74m/s in in one direction (+), and same magnitude in the opposite direction (-).
Answer:
786.6 N
Explanation:
mass of car, m = 912 kg
initial velocity of car, u = 31.5 m/s
final velocity of car, v = 24.6 m/ s
time, t = 8 s
Let a be the acceleration of the car
Use first equation of motion
v = u + a t
24.6 = 31.5 + a x 8
a = - 0.8625 m/s^2
Force, F = mass x acceleration
F = 912 x 0.8625
F = 786.6 N
Thus, the force on the car is 786.6 N.
Answer:
The maximum amplitude (
) will be 7.96 V.
Explanation:
We know, for distortion free operation, the slew rate (S) of an OPAMP is written as

where '
' is the highest frequency signal.
Therefore, from the above equation we can write,
