Answer:
The answer is C. Gas particles have no attractive forces between them.
Explanation:
The volume of the unit cell is 2.67 x 10⁻²⁸ m³.
<h3>What is the volume of a unit cell of a body-centered cubic crystal?</h3>
In a body-centered cubic unit cell, the volume occupied by the particles of the substance is about 68% of the total unit cell.
Assuming that a single atomic a sphere, the volume is:
Volume(atom) = 4/3 x π x r³
Volume(atom) = 4/3 x π x (169 x 10⁻¹²)³
Volume(atom) = 2.02 x 10⁻²⁹ m³
There are a total of 9 atoms in a body-centered unit cell, so the total volume occupied by atoms is:
2.02 x 10⁻²⁹ x 9
= 1.82 x 10⁻²⁸ m³
Volume of cell = (1.15 x 10⁻²⁸ ) / 0.68
Volume of cell = 2.67 x 10⁻²⁸ m³
Therefore, the volume of the unit cell is 2.67 x 10⁻²⁸ m³.
Learn more volume of unit cells at: brainly.com/question/1594030
#SPJ1
Answer:
Mass = 112 g
Explanation:
Given data:
Mass of CO₂ produced = 90.6 g
Mass of oxygen needed = ?
Solution:
Chemical equation:
C₃H₈ + 5O₂ → 3CO₂+ 4H₂O
Number of moles of CO₂:
Number of moles = 90.6 g/ 44 g/mol
Number of moles = 2.1 mol
Now we will compare the moles of CO₂ and oxygen:
CO₂ : O₂
3 : 5
2.1 : 5/3×2.1 = 3.5
Mass of oxygen needed:
Mass = number of moles × molar mass
Mass = 3.5 mol × 32 g/mol
Mass = 112 g
C. they are equal
This is because it takes about the same amount of time for the moon to rotate around its axis that it does to rotate around the Earth.
Answer:
C₂H₄O₂ and NaC₂H₃O₂ are reactants.
Explanation:
Word equation:
Acetic acid + sodium acetate → sodium diacetate
Chemical equation:
C₂H₄O₂ + NaC₂H₃O₂ → C₄H₇NaO₄
This is a synthesis reaction in which simple reactants combine to form complex product.
This is also balanced chemical equation because there are equal number of atoms of all elements on both side of equation. Thus it follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.