We can calculate this with the law of conservation of energy. Here we have a food package with a mass m=40 kg, that is in the height h=500 m and all of it's energy is potential. When it is dropped, it's potential energy gets converted into kinetic energy. So we can say that its kinetic and potential energy are equal, because we are neglecting air resistance:
Ek=Ep, where Ek=(1/2)*m*v² and Ep=m*g*h, where m is the mass of the body, g=9.81 m/s² and h is the height of the body.
(1/2)*m*v²=m*g*h, masses cancel out and we get:
(1/2)*v²=g*h, and we multiply by 2 both sides of the equation
v²=2*g*h, and we take the square root to get v:
v=√(2*g*h)
v=99.04 m/s
So the package is moving with the speed of v= 99.04 m/s when it hits the ground.
Hrdudikdodidbshshsjjsksks
Ignoring air resistance, the Kinetic energy before hitting the ground will be equal to the potential energy of the Piton at the top of the rock.
So we have 1/2 MV^2 = MGH
V^2 = 2GH
V = âš2GH
V = âš( 2 * 9.8 * 325)
V = âš 6370
V = 79.81 m/s
convection
please mark brainliest any other problems or questions feel free to ask
Answer:
acceleration of person = 9.77 m/s²
Explanation:
given data
latitude = 40 degree
to find out
Calculate the acceleration of a person
solution
we know that here 40 degree = 0.698 rad
so
acceleration of person = g - ω²R ...............1
and 1 rotation complete in 24 hours = 360 degree
here g is 9.81
so we know Earth angular speed ω = 7.27 ×
rad/s and R is earth radius that is 6.37 ×
m
so
put here value in equation 1 we get
acceleration of person = g - ω²R
acceleration of person = 9.81 - (7.27 ×
)² × 6.37 ×
acceleration of person = 9.77 m/s²