Answer:
The mass of the precipitate that AgCl is 3.5803 g.
Explanation:
a) To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (NaCl) = 1.46 g
Molar mass of sulfuric acid = 58.5 g/mol
Volume of solution = 

Putting values in above equation, we get:

0.09982 M is the concentration of the sodium chloride solution.
b) 
Moles of NaCl = 
according to reaction 1 mol of NaCl gives 1 mol of AgCl.
Then 0.02495 moles of NaCl will give:
of AgCl
Mass of 0.02495 moles of AgCl:

The mass of the precipitate that AgCl is 3.5803 g.
Answer:
Explanation:
When you are in the laboratory and take a direct sniff of the chemicals you are using, you run the risk of damaging your mucous membranes or your lungs. When it is necessary to smell chemicals in the lab, the proper technique is to cup your hand above the container and waft the air toward your face.
Answer:
"The total pressure in a mixture of gases is equal to the sum of partial pressures of each gas"
Explanation:
Dalton's law of partial pressures state that, in a mixture of gases, the total pressure is equal to the sum of the partial pressure exerted by each gas of the mixture. The equation is:
Total pressure = Partial pressure Gas 1 + Partial pressure Gas 2 + .... + Partial pressure Gas n
To complete the sentence we can say:
"The total pressure in a mixture of gases is equal to the sum of partial pressures of each gas"
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 2. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.
Answer:
Heat transfer = Q = 62341.6 J
Explanation:
Given data:
Heat transfer = ?
Mass of water = 50.0 g
Initial temperature = 30.0°C
Final temperature = 55.0°C
Specific heat capacity of water = 4.184 J/g.K
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55.0°C - 30.0°C
ΔT = 25°C (25+273= 298 K)
Q = 50.0 g × 4.184 J/g.K ×298 K
Q = 62341.6 J