Answer:
16613 m/s
Explanation:
Given that
mass of the fly, m = 0.55 g = 0.55*10^-3 kg
Kinetic Energy of the fly, E = 7.6*10^4 J
Speed of the fly, v = ? m/s
We know that the Kinetic Energy is that energy that an object, in this case, the fly, possesses due to its motion.
The Kinetic Energy, KE of any object is represented by the formula
KE = 1/2 * m * v²
If we substitute the values in the relation, we have,
7.6*10^4 = 1/2 * 0.55*10^-3 * v²
v² = (15.2*10^4) / 0.55*10^-3
v² = 2.76*10^8
v = √2.76*10^8
v = 16613 m/s
Thus, the fly would need a speed of 16.6 km/s in order to have a Kinetic Energy of 7.6*10^4 J
Einstein's...<span> theory of general relativity predicted that the </span>space-<span>time....</span>
Answer:
jupiter they have 79 moons,saturn has 62,uranus has 27,neptune has 14,pluto has 5,
Explanation:
<span>Trichome density and type and cannabinoid content of leaves and bracts were quantitated during organ ontogeny for three clones of Cannabis sativa L. Trichome initiation and development were found to occur throughout leaf and bract ontogeny. On leaves, bulbous glands were more abundant than capitate-sessile glands for all clones, although differences in density for each gland type were evident between clones. On pistillate bracts, capitate-sessile glands were more abundant than the bulbous form on all clones, and both types decreased in relative density during bract ontogeny for each clone. The capitate-stalked gland, present on bracts but absent from vegetative leaves, increased in density during bract ontogeny. The capitate-stalked gland appeared to be initiated later than bulbous or capitate-sessile glands during bract development and on one clone it was first found midway in bract ontogeny. Nonglandular trichomes decreased in density during organ ontogeny, but the densities differed between leaves and bracts and also between clones. Specific regulatory mechanisms appear to exist to control the development of each trichome type independently.</span>
The mass of the object will remain the same rather it's on the moon or on the Earth and even in other places. But the weight will change on the moon, so its weight will be different from the one it had on Earth