Answer:
a. 
b.
must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
is the time taken to stop after braking
Explanation:
Given:
- speed of leading car,

- speed of lagging car,

- distance between the cars,

- deceleration of the leading car after braking,

a.
Time taken by the car to stop:

where:
, final velocity after braking
time taken


b.
using the eq. of motion for the given condition:

where:
final velocity of the chasing car after braking = 0
acceleration of the chasing car after braking

must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
time taken by the chasing car to stop:


is the time taken to stop after braking
Answer:
The ability to adapt is important because :
1) It helps in the survival of human beings.
2) It brings more variation to the human kind.
3) It helps the species from getting endangered or extinct.
4) It brings transformation in the adapting kind.
Hope this helps you☺️☺️
Your potential energy and mass don't tell what your weight is.
If I walk up from the first floor to the second floor, my weight hasn't
changed even though my potential energy has increased.
Answer:
Option c) are perpendicular to the electric field
Explanation:
Equipotential surfaces are perpendicular to the electric field. the electric field lines are projected outwards from the equipotential surface, i.e., the lines of the electric field are at 90
to the equipotential surface.
Equipotential surface are those surfaces that have the same potential at any point on the surface. Thus the potential difference at any point on the surface is zero due to same potential.
Any charge particle on this surface will move in a perpendicular direction to the Coulombian force. No work is done by the force on a particle moving on an equipotential surface.
Answer:
22.5J
Explanation:
Here the force is given. Also, the displacement is given as 30cm.
First we should check if all the values are in their standard form.
Here 30cm should be converted to metre by dividing it with 100.
Which would give us 0.3m
Now we use the equation W=force x displacement =75 x 0.3=22.5J
I hope this satisfies you. If u have any further questions please let me know.
I hope u will follow me and make this the brainliest answer.