Answer:
Explanation:
Given
height of building h=3 m
Landing velocity of diver
at an angle of 
Let u be the initial velocity of diver at an angle of \theta with horizontal
Since there is no acceleration in horizontal direction therefore horizontal component of velocity will remain same
---- -----1
Considering Vertical motion

here 




----------------2
Divide 2 and 1 we get



Thus 

Answer:
coasting down hill on a bicycle
Explanation:
Coasting down the hill on a bicycle is a typical example of how kinetic energy is being transformed to potential energy in a system.
Kinetic energy is the energy due to the motion of a body, it can be derived using the expression below;
K.E =
m v²
Potential energy is the energy due to the position of a body. It can be derived using;
P.E = mgh
m is the mass
v is the velocity
g is the acceleration due to gravity
h is the height
Now, at the top of the hill, the potential energy is at the maximum. As the bicycle coasts down the potential energy is converted to kinetic energy.
Answer:
350.72 m/s
Explanation:
Formula for velocity of wave is;
v = fλ
Where;
v is speed
f is frequency
λ is wavelength
We are given;
f = 512 Hz
λ = 0.685 m
Thus;
v = 512 × 0.685
v = 350.72 m/s