Complete Question
Planet D has a semi-major axis = 60 AU and an orbital period of 18.164 days. A piece of rocky debris in space has a semi major axis of 45.0 AU. What is its orbital period?
Answer:
The value is
Explanation:
From the question we are told that
The semi - major axis of the rocky debris 
The semi - major axis of Planet D is 
The orbital period of planet D is 
Generally from Kepler third law

Here T is the orbital period while a is the semi major axis
So

=>
=> ![T_R = 18.164 * [\frac{ 45}{60} ]^{\frac{3}{2} }](https://tex.z-dn.net/?f=T_R%20%20%3D%2018.164%20%20%2A%20%20%5B%5Cfrac%7B%2045%7D%7B60%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D)
=>
The attractive force between all matter in the universe is gravity.
Answer:
The path of an object in uniform motion is a straight line.
wavelength of the EM wave produced by your iclicker is 0.33 m.
<h3>What makes an EM wave?</h3>
- When an electric field (illustrated in red arrows) combines with a magnetic field, electromagnetic waves are generated (which is shown in blue arrows). An electromagnetic wave's magnetic and electric fields are perpendicular to each other and to the wave's direction.
- A changing magnetic field causes a changing electric field, and vice versa—the two are inextricably related. Electromagnetic waves are created by changing fields. Electromagnetic waves, unlike mechanical waves, do not require a medium to propagate.
The clicker emits EM (electromagnetic) wave which travels at the speed of light, that is
v = 3 x 10⁸ m/s
The frequency is
f = 900mHz = 9 x 10⁸ Hz
velocity = frequency * wavelength, the wavelength, λ, is given by
fλ = v
λ = v/f
= (3 x 10⁸ m/s) / (9 x 10⁸ 1/s)
= 1/3 m = 0.333 m
To learn more about electromagnetic waves refer,
brainly.com/question/25847009
#SPJ1
It will take 6.42 s for the ball that is dropped from a height of 206 m to reach the ground.
From the question given above, the following data were obtained:
Height (H) = 206 m
<h3>Time (t) =? </h3>
NOTE: Acceleration due to gravity (g) = 10 m/s²
The time taken for the ball to get to the ground can be obtained as follow:
H = ½gt²
206 = ½ × 10 × t²
206 = 5 × t²
Divide both side by 5

Take the square root of both side

<h3>t = 6.42 s</h3>
Therefore, it will take 6.42 s for the ball to get to the ground.
Learn more: brainly.com/question/24903556