The correct answer is option C. <span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
</span><span>
Keisha follows the instructions for a demonstration on gas laws.
1. Place a small marshmallow in a large plastic syringe.
2. Cap the syringe tightly.
3. Pull the plunger back to double the volume of gas in the syringe.
Now, this activity is being done at the same temperature, because there is no mention of the temperature change. Thus, when the plunger is pulled back, the volume doubles, so pressure will decrease. Therefore, </span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
Answer: A:The reproductive system produces hormones.
B:The reproductive system transports reproductive cells.
C:The reproductive system produces reproductive cells.
Explanation:
A:The reproductive system produces hormones. : The reproductive organs ovaries in females and testes in males produces hormones. The ovaries produce estrogen and progesterone and testes produce testosterone.
B:The reproductive system transports reproductive cells. : The ovaries in females transfers an egg into the fallopian tube and testes in males secrete sperms at the time of copulation the fertilization of egg and sperm leads to the development of zygote the precursor of new life.
C:The reproductive system produces reproductive cells.: The ovaries undergo oogenesis and in testes spermatogenesis takes place to develop egg and sperms respectively.
Answer:
143.352 watt.
Explanation:
So, in the question above we are given the following parameters or data or information that is going to assist us in answering the question above efficiently. The parameters are:
"A 1.8 m wide by 1.0 m tall by 0.65m deep home freezer is insulated with 5.0cm thick Styrofoam insulation"
The inside temperature of the freezer = -20°C.
Thickness = 5.0cm = 5.0 × 10^-2 m.
Step one: Calculate the surface area of the freezer. That can be done by using the formula below:
Area = 2[ ( Length × breadth) + (breadth × height) + (length × height) ].
Area = 2[ (1.8 × 0.65) + (0.65 × 1.0) + (1.8 × 1.0)].
Area = 7.24 m^2.
Step two: Calculate the rate of heat transfer by using the formula below;
Rate of heat transfer =[ thermal conductivity × Area (T1 - T2) ]/ thickness.
Rate of heat transfer = 0.022 × 7.24(25+20)/5.0 × 10^-2 = 143.352 watt.
It is a mechanical wave and cannot travel through a vacuum.