Correction: The temperature change is from 20 °C to 30 °C.
Answer:
Cp = 1.0032 J.g⁻¹.°C⁻¹
Solution:
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 5016 J
m = mass = 500 g
Cp = Specific Heat Capacity = ??
ΔT = Change in Temperature = 30 °C - 20 °C = 10 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 5016 J / (500 g × 10 °C)
Cp = 1.0032 J.g⁻¹.°C⁻¹
Hi there!

We can use the following conversions to solve:
Total mass --> amount of mols --> amount of atoms (Avogadro's number)
Begin by calculating the amount of boron trifluoride in 3.61 grams:
3.61 g * (1 mol BF₃ / 67.8 g) ≈ 0.0532 mol BF₃
Use avogadro's number to convert:
0.0532 mol * 6.02× 10²³atoms / 1 mol = 3.203 × 10²² atoms
It described a nucleus surrounded by a large volume of space.
The answer is 15 bc you multiply the coefficient but the subscript
Assuming that nitrogen gas is ideal, we can use the equation PV = nRT to relate first conditions to the second condition. At constant temperature, pressure and volume are indirectly related as follows:
P = k / V
k is equal nRT
P1V1 = P2V2
P2 = 101.325 ( 4.65 ) / .480 = 981.586 kPa