In order to completely describe a velocity,
you need a speed and a direction.
Answer:
a) 4.9*10^-6
b) 5.71*10^-15
Explanation:
Given
current, I = 3.8*10^-10A
Diameter, D = 2.5mm
n = 8.49*10^28
The equation for current density and speed drift is
J = I/A = (ne) Vd
A = πD²/4
A = π*0.0025²/4
A = π*6.25*10^-6/4
A = 4.9*10^-6
Now,
J = I/A
J = 3.8*10^-10/4.9*10^-6
J = 7.76*10^-5
Electron drift speed is
J = (ne) Vd
Vd = J/(ne)
Vd = 7.76*10^-5/(8.49*10^28)*(1.60*10^-19)
Vd = 7.76*10^-5/1.3584*10^10
Vd = 5.71*10^-15
Therefore, the current density and speed drift are 4.9*10^-6
And 5.71*10^-15 respectively
A and C Im pretty sure :)
Answer:
FN is the forces acting on a body. When the body is at rest, the net force formula is given by, FNet = Fa + Fg.
Im in 7th and thats all I know so I hope it's enough
Answer:
4 m/s² down
Explanation:
We'll begin by calculating the net force acting on the object.
The net force acting on the object from the left and right side is zero because the same force is applied on both sides.
Next, we shall determine the net force acting on the object from the up and down side. This can be obtained as follow:
Force up (Fᵤ) = 15 N
Force down (Fₔ) = 25 N
Net force (Fₙ) =?
Fₙ = Fₔ – Fᵤ
Fₙ = 25 – 15
Fₙ = 10 N down
Finally, we shall determine the acceleration of the object. This can be obtained as follow:
Mass (ml= 2.5 Kg
Net force (Fₙ) = 10 N down
Acceleration (a) =?
Fₙ = ma
10 = 2.5 × a
Divide both side by 2.5
a = 10 / 2.5
a = 4 m/s² down
Therefore, the acceleration of the object is 4 m/s² down