Answer:
0.231 m/s
Explanation:
m = mass attached to the spring = 0.405 kg
k = spring constant of spring = 26.3 N/m
x₀ = initial position = 3.31 cm = 0.0331 m
x = final position = (0.5) x₀ = (0.5) (0.0331) = 0.01655 m
v₀ = initial speed = 0 m/s
v = final speed = ?
Using conservation of energy
Initial kinetic energy + initial spring energy = Final kinetic energy + final spring energy
(0.5) m v₀² + (0.5) k x₀² = (0.5) m v² + (0.5) k x²
m v₀² + k x₀² = m v² + k x²
(0.405) (0)² + (26.3) (0.0331)² = (0.405) v² + (26.3) (0.01655)²
v = 0.231 m/s
Answer:
According to <em>Newton's first law of motion:</em>
<u>An object in motion tends to remain in motion unless an external force acts upon it.</u>
<u>It stays in motion with the same speed and goes in the same direction.</u>
<u></u>
<em>Hope this helped </em>
<em>:)</em>
Answer:
IGNEOUS ROCKS
Explanation: Igneous rocks are those rocks that solidify from magma.
Igneous rock is divided into two ,they are:
1. Intrusive
Igneous rocks crystallized belowearth"s crust. Its cooling material is called lava.
2 Extrusive igneous rock is also known as known as volcanic rocks
At the bottom of the rotation, the kinetic far exceeds the potential. However, at both tops, potential exceeds kinetic.
Answer:
Two oxygen atoms
Explanation:
The majority of the oxygen in the air in our atmosphere consists of molecular oxygen (
), which consists of 2 atoms of oxygen, since free oxygen mainly form covalent bonds with other atoms of oxygen.
A small fraction of the oxygen, however, in the ozone form, which consists of 3 atoms of oxygen bond together (
).