Answer: Work Done would remain same.
Let us assume that the velocity is constant while taking the load up the inclined plane. Then, the kinetic energy would remain the same. This is because kinetic energy is dependent on velocity
. If that is constant, the kinetic energy would remain same. The potential energy is dependent on the height
. If the height is changed, then potential energy varies. In the question, it is mentioned that without changing the height, the length of the inclined plane is changed. Therefore, the potential energy would be same as before.
We know, work done is equal to potential energy plus kinetic energy. Since there is no change in any of these, the required work done would not change.
The correct answer is decreases
The further away you are the weaker it would be. That's why at one point you stop being in the field and ti doesn't pull you towards it anymore. Proportionally, if you move towards the Earth then it increases.
Answer:
<h2>14.52 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass
v is the velocity
From the question we have

We have the final answer as
<h3>14.52 J</h3>
Hope this helps you
To solve this problem it is necessary to apply the concepts related to Newton's second law, the definition of density and sum of forces in bodies.
From Newton's second law we understand that
Gravity at this case)
Where,
m = mass
a= acceleration
Also we know that

Part A) The buoyant force acting on the balloon is given as

As mass is equal to the density and Volume and acceleration equal to Gravity constant



PART B) The forces acting on the balloon would be given by the upper thrust force given by the fluid and its weight, then




PART C) The additional mass that can the balloon support in equilibrium is given as




Answer:
Taking water and oxygen from Earth is rather expensive and hard to do.
Explanation:
Without water and oxygen, travel to other planets is basically impossible