To solve this problem we will apply the definitions given in Newtonian theory about the Force of gravity, and the Force caused by weight. Both will be defined below, and in equal equilibrium condition to clear the variable concerning acceleration due to gravity. Finally, with the values provided in the statement, it will be replaced.
The equation for the gravitational force between the Earth and the object on the surface of the Earth is

Where,
G = Universal gravitational constant
= Mass of Earth
= Distance between object and center of earth
= Mass of Object
The equation for the gravitational pulling force on the object due to gravitational acceleration is

Equation the two expression we have


This the acceleration due to gravity which is composite constant.
Replacing with our values we have then


The value of composite constant is
. Here, the composite constant is nothing but the acceleration due to gravity which is constant always.
Answer:
the ray is reflected infinite number of times by 2 plane mirrors placed parallel to each other as each reflected ray would be the incident ray for the other.
Explanation:
the ray is reflected infinite number of times by 2 plane mirrors placed parallel to each other as each reflected ray would be the incident ray for the other.
Placing one mirror at an angle causes reflections to curve.
At a constant speed of 5.00 m/s, the speed at which the poodle completes a full revolution is

so that its period is
(where 1 revolution corresponds exactly to 360 degrees). We use this to determine how much of the circular path the poodle traverses in each given time interval with duration
. Denote by
the angle between the velocity vectors (same as the angle subtended by the arc the poodle traverses), then



We can then compute the magnitude of the velocity vector differences
for each time interval by using the law of cosines:


and in turn we find the magnitude of the average acceleration vectors to be

So that takes care of parts A, C, and E. Unfortunately, without knowing the poodle's starting position, it's impossible to tell precisely in what directions each average acceleration vector points.
Gravitational force is the weight of the object, therefore weight=mass*gravitational field strength=10*9.8=98N therefore the answer is D
<h2>
Answer: Earth's orbital path around the Sun</h2><h2>
</h2>
The <u>Ecliptic</u> refers to the orbit of the Earth around the Sun. Therefore, <u>for an observer on Earth it will be the apparent path of the Sun in the sky during the year, with respect to the "immobile background" of the other stars.</u>
<u />
It should be noted that the ecliptic plane (which is the same orbital plane of the Earth in its translation movement) is tilted with respect to the equator of the planet about
approximately. This is due to the inclination of the Earth's axis.
Hence, the correct option is Earth's orbital path around the Sun.