The resultant force on the object is
∑ <em>F</em> = 〈0, 8〉 N + 〈6, 0〉 N = 〈6, 8〉 N
which has a magnitude of
<em>F</em> = √((6 N)² + (8 N)²) = √(100 N²) = 10 N
By Newton's second law, the acceleration has magnitude <em>a</em> such that
<em>F</em> = <em>m a</em>
10 N = (2 kg) <em>a</em>
<em>a</em> = (10 N) / (2 kg)
<em>a</em> = 5 m/s²
so the answer is B.
Answer:
<u>A complete third electron shell holds </u><u>8</u><u> electrons</u>
<u>---------------------------</u>
<u>hope it helps...</u>
<u>have a great day!!</u>
Answer:
The resultant vector is 1 m/s
Explanation:
The resultant vector is 1 m/s west based on triangle law of vector addition, when two sides of a triangle is represented by two vectors, the resultant vector is the third side of the triangle.
The kinematics for the vertical launch we can enter the initial velocity is 11.76 m / s
Given parameters
To find
Kinematics is the part of physics that establishes the relationships between the position, velocity, and acceleration of bodies.
In this case we have a vertical launch
y = y₀ + v₀ t - ½ g t²
Where y and y₀ are the final and initial positions, respectively, v₀ the initial velocity, g the acceleration of gravity (g = 9.8 m / s²) and t the time
With the ball in hand, its position is zero
0 = 0 + v₀ t - ½ g t²
v₀ t - ½ g t² = 0
v₀ = ½ g t
Let's calculate
v₀ = ½ 9.8 2.4
v₀ = 11.76 m / s
In conclusion using kinematics for the vertical launch we can enter the initial velocity is 11.76 m / s
Learn more about vertical launch kinematics here:
brainly.com/question/15068914
Answer:
A
Explanation:
You can get alot of info from it then again the info could be misleading
Answer:
B
Explanation:
You can get some good info from the internet but its most likely the wrong info
Answer:
c
Explanation:
It informs you with the info you need then again you are most likely getting socialy forced information.