Answer:
Velocity of Pauli relative to Daniel = (-1.50ï + 3.90ĵ) m/s
x-component = -1.50 m/s
y-component = 3.90 m/s
Explanation:
Relative velocity of a body A relative to another body B, Vab, is given as
Vab = Va - Vb
where
Va = Relative velocity of body A with respect to another third body or frame of reference C
Vb = Relative velocity of body B with respect to that same third body or frame of reference C.
So, relative velocity can be given further as
Vab = Vac - Vbc
Velocity of Newton relative to Daniel = Vnd = 3.90 m/s due north = (3.90ĵ) m/s in vector form.
Velocity of Newton relative to Pauli = Vnp = 1.50 m/s due East = (1.50î) m/s in vector form
What is Pauli's velocity relative to Daniel?
Vpd = Vp - Vd
(Pauli's velocity relative to Daniel) = (Pauli's velocity relative to Newton) - (Daniel's velocity relative to Newton)
Vpd = Vpn - Vdn
Vpn = -Vnp = -(1.50î) m/s
Vdn = -Vnd = -(3.90ĵ) m/s
Vpd = -1.50î - (-3.90ĵ)
Velocity of Pauli relative to Daniel = (-1.50ï + 3.90ĵ) m/s
Hope this Helps!!!!
Answer:
1.1775 x 10^-3 m^3 /s
Explanation:
viscosity, η = 0.250 Ns/m^2
radius, r = 5 mm = 5 x 10^-3 m
length, l = 25 cm = 0.25 m
Pressure, P = 300 kPa = 300000 Pa
According to the Poisuellie's formula
Volume flow per unit time is


V = 1.1775 x 10^-3 m^3 /s
Thus, the volume of oil flowing per second is 1.1775 x 10^-3 m^3 /s.
Answer:
Real image
Explanation:
The picture is real, but it is reversed and tiny. An picture generated by a pinhole camera has certain features. As compared item, the image created by a pinhole camera is normally pretty small and looks reversed both on the vertically and horizontally axis.
Answer:
inertia
Explanation:
While riding a skateboard, Nina ran into a rough patch of pavement, but she thought she could ride right over it. Instead, the skateboard stopped but Nina didn't. Her (Blank) kept her moving forward, so she fell off the skateboard.inertia
Answer:
The new voltage between the parallel plates of the capacitor is 18V, because for a constant electric field, doubling the space between the parallel capacitor plates, will also double the potential difference (voltage) between the plates.
Explanation:
ΔV = E*Δd
Where;
ΔV is the change in potential difference
Δd is the change in the distance between the parallel plates
E is the electric field potential.
Assuming a constant electric field; 
when the spacing between the capacitor plates is doubled, d₂ = 2d₁
v₂ = (v₁*d₂)/(d₁)
v₂ = (v₁*2d₁)/(d₁)
v₂ = 2v₁
v₂ = 2(9) = 18 V
Therefore, for a constant electric field, doubling the space between the parallel capacitor plates, will also double the potential difference (voltage).