1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
QveST [7]
3 years ago
7

A baseball with a mass of 0.15 kilograms collides with a bat at a speed of 40 meters/second. The duration of the collision is 8.

0 × 10-3 seconds. The ball moves off with a speed of 50 meters/second in the opposite direction. What is the value of the force?
Physics
1 answer:
Vedmedyk [2.9K]3 years ago
8 0

Answer: 1687.5 N

Explanation:

From the second law of motion given by Newton, Force is the rate change of momentum.

F = \frac{dp}{dt}=\frac {m dv}{dt} = \frac{m (v_f-v_i)}{dt}

Mass of the baseball, m = 0.15 kg

Initial velocity, v_i=-40 m/s (negative because direction of initial velocity is opposite to the final velocity)

Final velocity, v_f=50 m/s

The duration of collision, dt= 8.0 \times 10^{-3} s

Force, F = \frac{0.15 kg (50-(-40) m/s)}{8.0 \times 10^{-3} s}=1687.5 N

Hence, the value of force is 1687.5 N.

You might be interested in
A 3-kg wheel with a radius of 35 cm is spinning in the horizontal plane about a vertical axis through its center at 800 rev/s. A
Kruka [31]

Answer:

\omega_f = 585.37 \ rev/s

Explanation:

given,

mass of wheel(M) = 3 Kg

radius(r) = 35 cm

revolution (ω_i)=  800 rev/s

mass (m)= 1.1 Kg

I_{wheel} = Mr²

when mass attached at the edge

I' = Mr² + mr²

using conservation of angular momentum

I \omega_i = I' \omega_f

(Mr^2) \times 800 = ( M r^2 + m r^2) \omega_f

M\times 800 = ( M + m )\omega_f

3\times 800 = (3+1.1)\times \omega_f

2400 = (4.1)\times \omega_f

\omega_f = 585.37 \ rev/s

3 0
4 years ago
uniform disk with mass 40.0 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is station
Alex787 [66]

Answer:

The magnitude of the tangential velocity is v= 0.868 m/s

The magnitude of the resultant acceleration at that point is  a = 4.057 m/s^2

Explanation:

From the question we are told that

      The mass of the uniform disk is m_d = 40.0kg

       The radius of the uniform disk is R_d = 0.200m

       The force applied on the disk is F_d = 30.0N

Generally the angular speed i mathematically represented as

             w = \sqrt{2 \alpha  \theta}

Where \theta is the angular displacement given from the question as

           \theta  = 0.2000 rev = 0.2000 rev * \frac{2 \pi \ rad }{1 rev}

                 =1.257\  rad

   \alpha is the angular acceleration which is mathematically represented as

                    \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

    The moment of inertial is mathematically represented as

                     I = \frac{1}{2} m_dR^2_d

Substituting values

                    I = 0.5 * 40 * 0.200^2

                        = 0.8kg \cdot m^2

Considering the equation for angular acceleration

               \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

Substituting values

               \alph\alpha = \frac{(30.0)(0.200)}{0.8}

                   = 7.5 rad/s^2

Considering the equation for angular velocity

    w = \sqrt{2 \alpha  \theta}

Substituting values

     w =\sqrt{2 * (7.5) * 1.257}

         = 4.34 \ rad/s

The tangential velocity of a given point on the rim is mathematically represented as

                 v = R_d w

Substituting values

                    = (0.200)(4.34)

                     v= 0.868 m/s

The radial acceleration at hat point  is mathematically represented as

            \alpha_r = \frac{v^2}{R}

                  = \frac{0.868^2}{0.200^2}

                 = 3.7699 \ m/s^2

The tangential acceleration at that point is mathematically represented as

               \alpha _t = R \alpha

Substituting values

           \alpha _t = (0.200) (7.5)

                 = 1.5 m/s^2

The magnitude of resultant acceleration at that point is

                 a = \sqrt{\alpha_r ^2+ \alpha_t^2 }

Substituting values

                a = \sqrt{(3.7699)^2 + (1.5)^2}

                   a = 4.057 m/s^2

         

7 0
3 years ago
During the fission reaction shown, how did the target nucleus change ?
Zarrin [17]

Answer:

A. The target nucleus split into two nuclei, each with fewer nucleons than the original.

Explanation:

5 0
3 years ago
What is the average speed of a boy who jogs 250 meters in 110 seconds
Ede4ka [16]

2.27 mps repeating.

This is the last question ill ever answer here. Thanks for being the last.

8 0
3 years ago
Read 2 more answers
Assume that in the Stern-Gerlach experiment for neutral silver atoms, the magnetic field has a magnitude of B = 0.21 T. (a) What
Marat540 [252]

Answer:

Explanation

Assume that in the Stern-Gerlach experiment for neutral silver atoms, the magnetic field has a magnitude of B = 0.21 T

A. To calculate the energy difference in the magnetic moment orientation

∆E = 2μB

For example, any electron's magnetic moment is measured to be 9.284764×10^−24 J/T

Then

μ = 9.284764 × 10^-24 J/T

∆E = 2μB

∆E = 2 × 9.284764 × 10^-24 × 0.21

∆E = 3.8996 × 10^-24 J

Then, to eV

1eV = 1.602 × 10^-19J

∆E = 3.8996 × 10^-24 J × 1eV / 1.602 × 10^-19J

∆E = 2.43 × 10^-5 eV

B. Frequency?

To determine the frequency of radiation hitch would induce the transition between the two states is,

∆E = hf

Where h is plank constant

h = 6.626 × 10-34 Js

Then, f = ∆E / h

f = 3.8996 × 10^-24 / 6.626 × 10^-34

f = 5.885 × 10^9 Hz

f ≈ 5.89 GHz

C. The wavelength of the radiation

From wave equation

v = fλ

In electromagnetic, we deal with speed of light, v = c

And the speed of light in vacuum is

c = 3 × 10^8 m/s

c = fλ

λ = c / f

λ = 3 × 10^8 / 5.885 × 10^9

λ = 0.051 m

λ = 5.1 cm

λ = 51 mm

D. It belongs to the microwave

From table

Micro waves ranges from

•Wavelength 10 to 0.01cm

Then we got λ = 5.1 cm, which is in the range.

•Frequency 3GHz to 3 Thz

Then, we got f ≈ 5.89 GHz, which is in the range

•Energy 10^-5 to 0.01 eV

We got ∆E = 2.43 × 10^-5 eV, which is in the range of the microwave

The value above is in microwave range

5 0
3 years ago
Other questions:
  • 。and 。 are needed to describe a force
    15·1 answer
  • While Calvin is doing a physics experiment outside with a radar gun, he notices that after three seconds a car reaches a speed o
    9·1 answer
  • Two men decide to use their cars to pull a truck stuck in mud. They attach ropes and one pulls with a force of 598 N at an angle
    15·1 answer
  • How a measuring scale measure our weight
    12·1 answer
  • Complete this equation that represents the process of nuclear fusion. Superscript 226 Subscript 88 Baseline R a yields Superscri
    10·2 answers
  • Can a measurement be exact
    8·1 answer
  • it is idea being transmitted by the sender to the receiver. it includes three aspects-content, structure, and style​
    14·1 answer
  • An object is moving in a circle. If the radius of the object is doubled, and the period remains constant, the magnitude of the v
    13·1 answer
  • An object with a momentum of 1600 kg m/s slows down and its new momentum is 900 kg m/s. What is the magnitude of the impulse tha
    6·1 answer
  • Which of the following are examples of some of the environmental costs of technological development? (Choose all that apply)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!